IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/rkvb3_v1.html
   My bibliography  Save this paper

Using Facebook Ad Data to Track the Global Digital Gender Gap

Author

Listed:
  • Fatehkia, Masoomali
  • Kashyap, Ridhi
  • Weber, Ingmar

Abstract

Gender equality in access to the internet and mobile phones has become increasingly recognised as a development goal. Monitoring progress towards this goal however is challenging due to the limited availability of gender-disaggregated data, particularly in low-income countries. In this data sparse context, we examine the potential of a source of digital trace `big data' -- Facebook's advertisement audience estimates -- that provides aggregate data on Facebook users by demographic characteristics covering the platform's over 2 billion users to measure and `nowcast' digital gender gaps. We generate a unique country-level dataset combining `online' indicators of Facebook users by gender, age and device type, `offline' indicators related to a country's overall development and gender gaps, and official data on gender gaps in internet and mobile access where available. Using this dataset, we predict internet and mobile phone gender gaps from official data using online indicators, as well as online and offline indicators. We find that the online Facebook gender gap indicators are highly correlated with official statistics on internet and mobile phone gender gaps. For internet gender gaps, models using Facebook data do better than those using offline indicators alone. Models combining online and offline variables however have the highest predictive power. Our approach demonstrates the feasibility of using Facebook data for real-time tracking of digital gender gaps. It enables us to improve geographical coverage for an important development indicator, with the biggest gains made for low-income countries for which existing data are most limited.

Suggested Citation

  • Fatehkia, Masoomali & Kashyap, Ridhi & Weber, Ingmar, 2018. "Using Facebook Ad Data to Track the Global Digital Gender Gap," SocArXiv rkvb3_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:rkvb3_v1
    DOI: 10.31219/osf.io/rkvb3_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5a9e8c10a9181f000f769100/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/rkvb3_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Abu-Ghaida, Dina & Klasen, Stephan, 2004. "The Costs of Missing the Millennium Development Goal on Gender Equity," World Development, Elsevier, vol. 32(7), pages 1075-1107, July.
    3. Ina GANGULI & Ricardo HAUSMANN & Martina VIARENGO, 2014. "Closing the gender gap in education: What is the state of gaps in labour force participation for women, wives and mothers?," International Labour Review, International Labour Organization, vol. 153(2), pages 173-207, June.
    4. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatehkia, Masoomali & Kashyap, Ridhi & Weber, Ingmar, 2018. "Using Facebook ad data to track the global digital gender gap," World Development, Elsevier, vol. 107(C), pages 189-209.
    2. Fatehkia, Masoomali & Kashyap, Ridhi & Weber, Ingmar, 2018. "Using Facebook Ad Data to Track the Global Digital Gender Gap," SocArXiv rkvb3, Center for Open Science.
    3. Lahiri, Kajal & Monokroussos, George & Zhao, Yongchen, 2013. "The yield spread puzzle and the information content of SPF forecasts," Economics Letters, Elsevier, vol. 118(1), pages 219-221.
    4. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    5. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    6. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    7. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    8. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    9. Robert Ambrisko, 2022. "Nowcasting Macroeconomic Variables Using High-Frequency Fiscal Data," Working Papers 2022/5, Czech National Bank.
    10. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    11. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    12. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    13. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    14. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    15. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    16. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
    17. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    18. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    19. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    20. Sean P. Grover & Michael W. McCracken, 2014. "Factor-based prediction of industry-wide bank stress," Review, Federal Reserve Bank of St. Louis, vol. 96(2), pages 173-194.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:rkvb3_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.