IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v86y2020ics0966692319309172.html
   My bibliography  Save this article

Robust accessibility: Measuring accessibility based on travelers' heterogeneous strategies for managing travel time uncertainty

Author

Listed:
  • Lee, Jinhyung
  • Miller, Harvey J.

Abstract

Uncertainties in travel times due to traffic congestion and delay are risks for drivers and public transit users. To avoid undesired consequences such as losing jobs or missing medical appointments, people can manage the risks of missing on-time arrivals to destinations using different strategies, including leaving earlier to create a safety margin and choosing routes that have more reliable rather than fastest travel times. This research develops a general analytical framework for measuring accessibility considering automobile or public transit travelers' heterogeneous strategies for dealing with travel time uncertainty. To represent different safety margin plans, we use effective travel time (expected time + safety margin), given specified on-time arrival probabilities. Heterogeneity in routing strategy is addressed using different Pareto-optimal routes with two main criteria: faster travel time vs. higher reliability. Based on various safety margin and routing strategy combinations, we examine how accessibility changes under varying safety margin plans and routing strategies. Also, we define and measure robust accessibility: geographic regions that are accessible regardless of the safety margin planning and routing strategy. Robust accessibility can provide a conservative and reasonable view of accessibility under travel time uncertainty. To demonstrate the applicability of the methods, we carry out an empirical study on measuring the impacts of new transit service on healthcare accessibility in a deprived neighborhood in Columbus, Ohio, USA.

Suggested Citation

  • Lee, Jinhyung & Miller, Harvey J., 2020. "Robust accessibility: Measuring accessibility based on travelers' heterogeneous strategies for managing travel time uncertainty," Journal of Transport Geography, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s0966692319309172
    DOI: 10.1016/j.jtrangeo.2020.102747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319309172
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lam, Terence C. & Small, Kenneth A., 2003. "The Value of Time and Reliability: Measurement from a Value Pricing Experiment," University of California Transportation Center, Working Papers qt47s4z7z5, University of California Transportation Center.
    2. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    3. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    4. Wessel, Nate & Farber, Steven, 2019. "The Effect of Route-choice Strategy on Transit Travel Time Estimates," SocArXiv 3r4p6, Center for Open Science.
    5. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    6. Hall, Randolph W., 1983. "Travel outcome and performance: The effect of uncertainty on accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 275-290, August.
    7. de Palma, André & Picard, Nathalie, 2005. "Route choice decision under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 295-324, May.
    8. Wessel, Nate & Allen, Jeff & Farber, Steven, 2017. "Constructing a routable retrospective transit timetable from a real-time vehicle location feed and GTFS," Journal of Transport Geography, Elsevier, vol. 62(C), pages 92-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jed A. Long & Jinhyung Lee & Darja Reuschke, 2023. "Activity graphs: Spatial graphs as a framework for quantifying individual mobility," Journal of Geographical Systems, Springer, vol. 25(3), pages 377-402, July.
    2. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    3. Rafael H. M. Pereira & Pedro R. Andrade & João Pedro Bazzo Vieira, 2023. "Exploring the time geography of public transport networks with the gtfs2gps package," Journal of Geographical Systems, Springer, vol. 25(3), pages 453-466, July.
    4. Javanmard, Reyhane & Lee, Jinhyung & Kim, Kyusik & Park, Jinwoo & Diab, Ehab, 2024. "Evaluating the impacts of supply-demand dynamics and distance decay effects on public transit project assessment: A study of healthcare accessibility and inequalities," Journal of Transport Geography, Elsevier, vol. 116(C).
    5. Javanmard, Reyhane & Lee, Jinhyung & Kim, Junghwan & Liu, Luyu & Diab, Ehab, 2023. "The impacts of the modifiable areal unit problem (MAUP) on social equity analysis of public transit reliability," Journal of Transport Geography, Elsevier, vol. 106(C).
    6. Singh, Suraj Shirodkar & Javanmard, Reyhane & Lee, Jinhyung & Kim, Junghwan & Diab, Ehab, 2021. "The new BRT system has led to an overall increase in transit-based accessibility to essential services during the COVID-19 pandemic: Empirical evidence from Winnipeg, Canada," OSF Preprints anjd7, Center for Open Science.
    7. Liu, Rick Zhaoju & Shalaby, Amer, 2024. "Impacts of public transit delays and disruptions on equity seeking groups in Toronto – A time-expanded graph approach," Journal of Transport Geography, Elsevier, vol. 114(C).
    8. Klar, Ben & Lee, Jinhyung & Long, Jed A. & Diab, Ehab, 2023. "The impacts of accessibility measure choice on public transit project evaluation: A comparative study of cumulative, gravity-based, and hybrid approaches," Journal of Transport Geography, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    2. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    3. Hongcheng Gan & Yang Bai, 2014. "The effect of travel time variability on route choice decision: a generalized linear mixed model based analysis," Transportation, Springer, vol. 41(2), pages 339-350, March.
    4. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    5. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.
    6. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    7. Papinski, Dominik & Scott, Darren M., 2011. "A GIS-based toolkit for route choice analysis," Journal of Transport Geography, Elsevier, vol. 19(3), pages 434-442.
    8. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
    9. Xiangdong Xu & Anthony Chen & Lin Cheng, 2013. "Assessing the effects of stochastic perception error under travel time variability," Transportation, Springer, vol. 40(3), pages 525-548, May.
    10. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    11. Barahimi, Amir Hossein & Eydi, Alireza & Aghaie, Abdolah, 2021. "Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Gaudry, Marc, 2018. "The utility of journeys, from Dupuit's constant-time bridge crossing hops to commutes of chosen duration and reliability in the Paris region," Transport Policy, Elsevier, vol. 70(C), pages 53-68.
    13. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    14. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    15. André de Palma & Robin Lindsey & Nathalie Picard, 2012. "Risk Aversion, the Value of Information, and Traffic Equilibrium," Transportation Science, INFORMS, vol. 46(1), pages 1-26, February.
    16. Steimetz, Seiji S.C. & Brownstone, David, 2005. "Estimating commuters' "value of time" with noisy data: a multiple imputation approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 865-889, December.
    17. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    18. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    19. Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2004. "Predicting multi-faceted activity-travel adjustment strategies in response to possible congestion pricing scenarios using an Internet-based stated adaptation experiment," Transport Policy, Elsevier, vol. 11(1), pages 31-41, January.
    20. Zachary Breig & Matthew Gibson & Jeffrey Shrader, 2019. "Why Do We Procrastinate? Present Bias and Optimism," Department of Economics Working Papers 2019-15, Department of Economics, Williams College.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:86:y:2020:i:c:s0966692319309172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.