Author
Listed:
- Wilde, Joshua
- Chen, Wei
- Lohmann, Sophie
Abstract
We use data from Google Trends to predict the effect of the COVID-19 pandemic on future births in the United States. First, we show that periods of above-normal search volume for Google keywords relating to conception and pregnancy in US states are associated with higher numbers of births in the following months. Excess searches for unemployment keywords have the opposite effect. Second, by employing simple statistical learning techniques, we demonstrate that including information on keyword search volumes in prediction models significantly improves forecast accuracy over a number of cross-validation criteria. Third, we use data on Google searches during the COVID-19 pandemic to predict changes in aggregate fertility rates in the United States at the state level through February 2021. Our analysis suggests that between November 2020 and February 2021, monthly US births will drop sharply by approximately 15%. For context, this would be a 50% larger decline than that following the Great Recession of 2008-2009, and similar in magnitude to the declines following the Spanish Flu pandemic of 1918-1919 and the Great Depression. Finally, we find heterogeneous effects of the COVID-19 pandemic across different types of mothers. Women with less than a college education, as well as Black or African American women, are predicted to have larger declines in fertility due to COVID-19. This finding is consistent with elevated caseloads of COVID-19 in low-income and minority neighborhoods, as well as with evidence suggesting larger economic impacts of the crisis among such households.
Suggested Citation
Wilde, Joshua & Chen, Wei & Lohmann, Sophie, 2020.
"COVID-19 and the Future of US Fertility: What Can We Learn from Google?,"
SocArXiv
2bgqs_v1, Center for Open Science.
Handle:
RePEc:osf:socarx:2bgqs_v1
DOI: 10.31219/osf.io/2bgqs_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:2bgqs_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.