IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0683.html
   My bibliography  Save this paper

Common correlated effect cross-sectional dependence corrections for non-linear conditional mean panel models

Author

Listed:
  • Hacioglu Hoke, Sinem

    (Bank of England)

  • Kapetanios, George

    (Kings College London)

Abstract

This paper provides an approach to estimation and inference for non-linear conditional mean panel data models, in the presence of cross-sectional dependence. We modify the common correlated effects (CCE) correction of Pesaran (2006) to filter out the interactive unobserved multifactor structure. The estimation can be carried out using non-linear least squares, by augmenting the set of explanatory variables with cross-sectional averages of both linear and non-linear terms. We propose pooled and mean group estimators, derive their asymptotic distributions, and show the consistency and asymptotic normality of the coefficients of the model. The features of the proposed estimators are investigated through extensive Monte Carlo experiments. We apply our method to estimate UK banks’ wholesale funding costs and explore the non-linear relationship between public debt and output growth.

Suggested Citation

  • Hacioglu Hoke, Sinem & Kapetanios, George, 2017. "Common correlated effect cross-sectional dependence corrections for non-linear conditional mean panel models," Bank of England working papers 683, Bank of England.
  • Handle: RePEc:boe:boeewp:0683
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2017/common-correlated-effect-cross-sectional-dependence-corrections.pdf?la=en&hash=F66F211832A5F513246B8B53215DDCFB6DB1F17D
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anne-Laure Delatte & Julien Fouquau & Richard Portes, 2014. "Nonlinearities in sovereign risk pricing the role of cds index contracts," Working Papers hal-03460263, HAL.
    2. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    3. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    4. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    5. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(5), pages 813-843, October.
    6. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    7. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran & Mehdi Raissi, 2017. "Is There a Debt-Threshold Effect on Output Growth?," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 135-150, March.
    8. Anne-Laure Delatte & Julien Fouquau & Richard Portes, 2014. "Nonlinearities in sovereign risk pricing the role of cds index contracts," Working Papers hal-03460263, HAL.
    9. Floro, Danvee & van Roye, Björn, 2017. "Threshold effects of financial stress on monetary policy rules: A panel data analysis," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 599-620.
    10. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    11. Hyun Song Shin, 2009. "Reflections on Northern Rock: The Bank Run That Heralded the Global Financial Crisis," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 101-119, Winter.
    12. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    13. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.
    14. Beau, Emily & Hill, John & Hussain, Tanveer & Nixon, Dan, 2014. "Bank funding costs: what are they, what determines them and why do they matter?," Bank of England Quarterly Bulletin, Bank of England, vol. 54(4), pages 370-384.
    15. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    16. Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo.
    17. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    18. Carmen M. Reinhart & Vincent R. Reinhart & Kenneth S. Rogoff, 2012. "Public Debt Overhangs: Advanced-Economy Episodes since 1800," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 69-86, Summer.
    19. Annaert, Jan & De Ceuster, Marc & Van Roy, Patrick & Vespro, Cristina, 2013. "What determines Euro area bank CDS spreads?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 444-461.
    20. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models: Rejoinder," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 503-509, October.
    21. Baum, Anja & Checherita-Westphal, Cristina & Rother, Philipp, 2013. "Debt and growth: New evidence for the euro area," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 809-821.
    22. Dominitz, Jeff & Sherman, Robert P., 2005. "Some Convergence Theory For Iterative Estimation Procedures With An Application To Semiparametric Estimation," Econometric Theory, Cambridge University Press, vol. 21(4), pages 838-863, August.
    23. repec:hal:spmain:info:hdl:2441/6b3bdv9unt9mspi3ri2ff917d6 is not listed on IDEAS
    24. Alan J. Auerbach & Yuriy Gorodnichenko, 2013. "Output Spillovers from Fiscal Policy," American Economic Review, American Economic Association, vol. 103(3), pages 141-146, May.
    25. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    26. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    27. repec:dau:papers:123456789/13143 is not listed on IDEAS
    28. Dent, Kieran & Hacıoğlu Hoke, Sinem & Panagiotopoulos, Apostolos, 2021. "Solvency and wholesale funding cost interactions at UK banks," Journal of Financial Stability, Elsevier, vol. 52(C).
    29. Christoph Aymanns & Carlos Caceres & Christina Daniel & Miss Liliana B Schumacher, 2016. "Bank Solvency and Funding Cost," IMF Working Papers 2016/064, International Monetary Fund.
    30. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    31. Hsiao,Cheng, 2015. "Analysis of Panel Data," Cambridge Books, Cambridge University Press, number 9781107038691.
    32. Harding, Matthew & Lamarche, Carlos, 2011. "Least squares estimation of a panel data model with multifactor error structure and endogenous covariates," Economics Letters, Elsevier, vol. 111(3), pages 197-199, June.
    33. Westerlund, Joakim & Urbain, Jean-Pierre, 2015. "Cross-sectional averages versus principal components," Journal of Econometrics, Elsevier, vol. 185(2), pages 372-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinem Hacıoğlu Hoke & George Kapetanios, 2021. "Common correlated effect cross‐sectional dependence corrections for nonlinear conditional mean panel models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 125-150, January.
    2. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    4. Dent, Kieran & Hacıoğlu Hoke, Sinem & Panagiotopoulos, Apostolos, 2021. "Solvency and wholesale funding cost interactions at UK banks," Journal of Financial Stability, Elsevier, vol. 52(C).
    5. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    6. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    7. Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021. "Recursive estimation in large panel data models: Theory and practice," Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
    8. Miao, Ke & Li, Kunpeng & Su, Liangjun, 2020. "Panel threshold models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 219(1), pages 137-170.
    9. Chen, Bin & Huang, Liquan, 2018. "Nonparametric testing for smooth structural changes in panel data models," Journal of Econometrics, Elsevier, vol. 202(2), pages 245-267.
    10. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    11. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    12. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    13. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    14. Ugo Panizza & Andrea F. Presbitero, 2013. "Public Debt and Economic Growth in Advanced Economies: A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 149(II), pages 175-204, June.
    15. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    16. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    17. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    18. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
    19. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    20. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.

    More about this item

    Keywords

    Non-linear panel data model; cross-sectional dependence; common correlated effects estimator;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.