Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020. "Computationally efficient inference in large Bayesian mixed frequency VARs," Economics Letters, Elsevier, vol. 191(C).
- Deborah Gefang & Gary Koop & Aubrey Poon, "undated". "Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs," Discussion Papers in Economics 20/02, Division of Economics, School of Business, University of Leicester.
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- John Cotter & Mark Hallam & Kamil Yilmaz, 2017.
"Mixed-frequency macro-financial spillovers,"
Working Papers
201704, Geary Institute, University College Dublin.
- John Cotter & Mark Hallam & Kamil Yilmaz, 2017. "Mixed-Frequency Macro-Financial Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1704, Koc University-TUSIAD Economic Research Forum.
- Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019.
"Variational Bayesian inference in large Vector Autoregressions with hierarchical shrinkage,"
CAMA Working Papers
2019-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
- Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
- Korobilis, Dimitris & Koop, Gary, 2018.
"Variational Bayes inference in high-dimensional time-varying parameter models,"
Essex Finance Centre Working Papers
22665, University of Essex, Essex Business School.
- Gary Koop & Dimitris Korobilis, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Working Paper series 18-31, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018.
"Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
- Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2019. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," EMF Research Papers 20, Economic Modelling and Forecasting Group.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015.
"Bayesian Mixed Frequency VARs,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
- Ching Wai Chiu & Bjorn Eraker & Andrew T. Foerster & Tae Bong Kim & Hernan D. Seoane, 2011. "Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach," Research Working Paper RWP 11-11, Federal Reserve Bank of Kansas City.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Lehmann, Robert & Wikman, Ida, 2022.
"Quarterly GDP Estimates for the German States,"
MPRA Paper
112642, University Library of Munich, Germany.
- Robert Lehmann & Ida Wikman, 2022. "Quarterly GDP Estimates for the German States," ifo Working Paper Series 370, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Robert Lehmann & Ida Wikman, 2023. "Quarterly GDP Estimates for the German States: New Data for Business Cycle Analyses and Long-Run Dynamics," CESifo Working Paper Series 10280, CESifo.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023.
"Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting,"
Working Papers
2311, University of Strathclyde Business School, Department of Economics.
- Gary Koop & Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023. "Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting," Working Papers 23-09, Federal Reserve Bank of Cleveland.
- Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2021.
"Measuring the effectiveness of US monetary policy during the COVID‐19 recession,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 287-297, July.
- Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2020. "Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession," Papers 2007.15419, arXiv.org.
- Deborah Gefang & Stephen G. Hall & George S. Tavlas, 2022. "Fast Two-Stage Variational Bayesian Approach to Estimating Panel Spatial Autoregressive Models with Unrestricted Spatial Weights Matrices," Papers 2205.15420, arXiv.org, revised Aug 2023.
- Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
- Blagov, Boris & Müller, Henrik & Jentsch, Carsten & Schmidt, Torsten, 2021. "The investment narrative: Improving private investment forecasts with media data," Ruhr Economic Papers 921, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
- Deborah Gefang & Stephen G. Hall & George S. Tavlas, 2023. "Identifying spatial interdependence in panel data with large N and small T," Papers 2309.03740, arXiv.org.
- Robert Lehmann, 2023. "READ-GER: Introducing German Real-Time Regional Accounts Data for Revision Analysis and Nowcasting," CESifo Working Paper Series 10315, CESifo.
- Blagov, Boris & Krause, Clara & Schmidt, Torsten & Exß, Franziska & Heinisch, Katja & Holtemöller, Oliver, 2024. "Frühzeitige Ermittlung stabiler Ergebnisse zum Bruttoinlandsprodukt bzw. realen Wirtschaftswachstum und der Bruttowertschöpfung auf Länderebene. Endbericht," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 296879.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020.
"A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior,"
Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Sebastian Ankargren & M{aa}ns Unosson & Yukai Yang, 2019. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Papers 1911.09151, arXiv.org.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018.
"Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
- Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2019. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," EMF Research Papers 20, Economic Modelling and Forecasting Group.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023.
"Nowcasting in a pandemic using non-parametric mixed frequency VARs,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
- Florian Huber & Gary Koop & Luca Onorante & Michael Pfarrhofer & Josef Schreiner, 2020. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Papers 2008.12706, arXiv.org, revised Dec 2020.
- Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Working Papers 2021-01, Joint Research Centre, European Commission.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020.
"Reconciled Estimates of Monthly GDP in the US,"
Economic Statistics Centre of Excellence (ESCoE) Discussion Papers
ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.
- Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2020. "Reconciled Estimates of Monthly GDP in the US," EMF Research Papers 37, Economic Modelling and Forecasting Group.
- Ankargren, Sebastian & Jonéus, Paulina, 2021.
"Simulation smoothing for nowcasting with large mixed-frequency VARs,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Papers 1907.01075, arXiv.org.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Thomas B. Götz & Alain W. Hecq, 2019.
"Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
- Hecq, Alain & Goetz, Thomas, 2018. "Granger causality testing in mixed-frequency Vars with possibly (co)integrated processes," MPRA Paper 87746, University Library of Munich, Germany.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023.
"Are low frequency macroeconomic variables important for high frequency electricity prices?,"
Economic Modelling, Elsevier, vol. 120(C).
- Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
- Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2021.
"Measuring the effectiveness of US monetary policy during the COVID‐19 recession,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 287-297, July.
- Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2020. "Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession," Papers 2007.15419, arXiv.org.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
- Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018.
"Using low frequency information for predicting high frequency variables,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
- Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.
- Gary Koop & Stuart McIntyre & James Mitchell, 2018.
"UK regional nowcasting using a mixed frequency vector autoregressive model,"
Working Papers
1805, University of Strathclyde Business School, Department of Economics.
- Gary Koop & Stuart McIntyre & James Mitchell, 2018. "UK Regional Nowcasting using a Mixed Frequency Vector Autoregressive Model," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-07, Economic Statistics Centre of Excellence (ESCoE).
- Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
- Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
More about this item
Keywords
Mixed Frequency; Variational inference; Vector Autoregression; Stochastic Volatility; Hierarchical Prior; Forecasting;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-07-27 (Econometrics)
- NEP-ETS-2020-07-27 (Econometric Time Series)
- NEP-ORE-2020-07-27 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:escoed:escoe-dp-2020-07. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ESCoE Centre Manager (email available below). General contact details of provider: https://edirc.repec.org/data/escoeuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.