IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v13y2025i1p2-d1562219.html
   My bibliography  Save this article

Forecasting Half-Hourly Electricity Prices Using a Mixed-Frequency Structural VAR Framework

Author

Listed:
  • Gaurav Kapoor

    (Jetstar Airways (Australia), 79 Victoria Parade, Collingwood, VIC 3066, Australia)

  • Nuttanan Wichitaksorn

    (Department of Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand)

  • Mengheng Li

    (Economics Discipline Group, University of Technology Sydney Business School, Sydney, NSW 2007, Australia)

  • Wenjun Zhang

    (Department of Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand)

Abstract

Electricity price forecasting has been a topic of significant interest since the deregulation of electricity markets worldwide. The New Zealand electricity market is run primarily on renewable fuels, and so weather metrics have a significant impact on electricity price and volatility. In this paper, we employ a mixed-frequency vector autoregression (MF-VAR) framework where we propose a VAR specification to the reverse unrestricted mixed-data sampling (RU-MIDAS) model, called RU-MIDAS-VAR, to provide point forecasts of half-hourly electricity prices using several weather variables and electricity demand. A key focus of this study is the use of variational Bayes as an estimation technique and its comparison with other well-known Bayesian estimation methods. We separate forecasts for peak and off-peak periods in a day since we are primarily concerned with forecasts for peak periods. Our forecasts, which include peak and off-peak data, show that weather variables and demand as regressors can replicate some key characteristics of electricity prices. We also find the MF-VAR and RU-MIDAS-VAR models achieve similar forecast results. Using the LASSO, adaptive LASSO, and random subspace regression as dimension-reduction and variable selection methods helps to improve forecasts where random subspace methods perform well for large parameter sets while the LASSO significantly improves our forecasting results in all scenarios.

Suggested Citation

  • Gaurav Kapoor & Nuttanan Wichitaksorn & Mengheng Li & Wenjun Zhang, 2025. "Forecasting Half-Hourly Electricity Prices Using a Mixed-Frequency Structural VAR Framework," Econometrics, MDPI, vol. 13(1), pages 1-26, January.
  • Handle: RePEc:gam:jecnmx:v:13:y:2025:i:1:p:2-:d:1562219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/13/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/13/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020. "Computationally efficient inference in large Bayesian mixed frequency VARs," Economics Letters, Elsevier, vol. 191(C).
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
    5. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    8. Thomas B Götz & Klemens Hauzenberger, 2021. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 442-461.
    9. Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021. "Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO," Energies, MDPI, vol. 14(11), pages 1-17, June.
    10. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    11. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    2. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    3. Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    4. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    5. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    6. Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
    7. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.
    8. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    9. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    10. D. Tutberidze & D. Japaridze, 2017. "Macroeconomic Forecasting Using Bayesian Vector Autoregressive Approach," Вестник Киевского национального университета имени Тараса Шевченко. Экономика., Socionet;Киевский национальный университет имени Тараса Шевченко, vol. 2(191), pages 42-49.
    11. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    12. Rangan Gupta & Monique Reid, 2013. "Macroeconomic surprises and stock returns in South Africa," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(3), pages 266-282, July.
    13. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    14. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    16. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    17. Jiahe Lin & George Michailidis, 2019. "Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models," Papers 1912.04146, arXiv.org, revised May 2020.
    18. Zhao, Jing, 2023. "Time-varying impact of geopolitical risk on natural resources prices: Evidence from the hybrid TVP-VAR model with large system," Resources Policy, Elsevier, vol. 82(C).
    19. Chai, Jian & Guo, Ju-E. & Meng, Lei & Wang, Shou-Yang, 2011. "Exploring the core factors and its dynamic effects on oil price: An application on path analysis and BVAR-TVP model," Energy Policy, Elsevier, vol. 39(12), pages 8022-8036.
    20. Doojav, Gan-Ochir, 2021. "Macroeconomic modeling for optimal stabilization policy in Mongolia," MPRA Paper 111206, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:13:y:2025:i:1:p:2-:d:1562219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.