IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.15420.html
   My bibliography  Save this paper

Fast Two-Stage Variational Bayesian Approach to Estimating Panel Spatial Autoregressive Models with Unrestricted Spatial Weights Matrices

Author

Listed:
  • Deborah Gefang
  • Stephen G. Hall
  • George S. Tavlas

Abstract

This paper proposes a fast two-stage variational Bayesian (VB) algorithm to estimate unrestricted panel spatial autoregressive models. Using Dirichlet-Laplace priors, we are able to uncover the spatial relationships between cross-sectional units without imposing any a priori restrictions. Monte Carlo experiments show that our approach works well for both long and short panels. We are also the first in the literature to develop VB methods to estimate large covariance matrices with unrestricted sparsity patterns, which are useful for popular large data models such as Bayesian vector autoregressions. In empirical applications, we examine the spatial interdependence between euro area sovereign bond ratings and spreads. We find marked differences between the spillover behaviours of the northern euro area countries and those of the south.

Suggested Citation

  • Deborah Gefang & Stephen G. Hall & George S. Tavlas, 2022. "Fast Two-Stage Variational Bayesian Approach to Estimating Panel Spatial Autoregressive Models with Unrestricted Spatial Weights Matrices," Papers 2205.15420, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2205.15420
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.15420
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    2. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    3. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    4. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020. "Computationally efficient inference in large Bayesian mixed frequency VARs," Economics Letters, Elsevier, vol. 191(C).
    5. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    6. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    7. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    8. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    9. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    10. Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, vol. 3(1), pages 1-28, March.
    11. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    12. Xiaodong Liu & Paulo Saraiva, 2019. "GMM estimation of spatial autoregressive models in a system of simultaneous equations with heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 38(4), pages 359-385, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deborah Gefang & Stephen G. Hall & George S. Tavlas, 2023. "Identifying spatial interdependence in panel data with large N and small T," Papers 2309.03740, arXiv.org.
    2. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    3. Zhang, Yuanqing & Sun, Yanqing, 2015. "Estimation of partially specified dynamic spatial panel data models with fixed-effects," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 37-46.
    4. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    5. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    6. Gefang, Deborah & Hall, Stephen G. & Tavlas, George S. & Wang, Yongli, 2024. "Quantifying spillovers among regions," Journal of International Money and Finance, Elsevier, vol. 140(C).
    7. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    8. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    9. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    10. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    11. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    12. Christophe Muller & Pierre Pecher, 2018. "Transborder Ethnic Kin and Local Prosperity: Evidence from Night-Time Light Intensity in Africa," Working Papers halshs-01801170, HAL.
    13. Mengqi Zhang & Boping Tian, 2023. "Profile Maximum Likelihood Estimation of Single-Index Spatial Dynamic Panel Data Model," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    14. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    15. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    16. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    17. Bai, Jushan & Li, Kunpeng, 2013. "Spatial panel data models with common shocks," MPRA Paper 52786, University Library of Munich, Germany, revised 09 Mar 2014.
    18. dos Santos, Gervásio & Faria, Weslem, 2012. "Spatial Panel Data Models and Fuel Demand in Brazil," TD NEREUS 10-2012, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    19. repec:rri:wpaper:201303 is not listed on IDEAS
    20. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    21. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.15420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.