IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/28241.html
   My bibliography  Save this paper

Simple and Credible Value-Added Estimation Using Centralized School Assignment

Author

Listed:
  • Joshua Angrist
  • Peter Hull
  • Parag A. Pathak
  • Christopher R. Walters

Abstract

Many large urban school districts match students to schools using algorithms that incorporate an element of random assignment. We introduce two simple empirical strategies to harness this randomization for value-added models (VAMs) measuring the causal effects of individual schools. The first estimator controls for the probability of being offered admission to different schools, treating the take-up decision as independent of potential outcomes. Randomness in school assignments is used to test this key conditional independence assumption. The second estimator uses randomness in offers to generate instrumental variables (IVs) for school enrollment. This procedure uses a low-dimensional model of school quality mediators to solve the under-identification challenge arising from the fact that some schools are under-subscribed. Both approaches relax the assumptions of conventional value-added models while obviating the need for elaborate nonlinear estimators. In applications to data from Denver and New York City, we find that models controlling for both assignment risk and lagged achievement yield highly reliable VAM estimates. Estimates from models with fewer controls and older lagged score controls are improved markedly by IV.

Suggested Citation

  • Joshua Angrist & Peter Hull & Parag A. Pathak & Christopher R. Walters, 2020. "Simple and Credible Value-Added Estimation Using Centralized School Assignment," NBER Working Papers 28241, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:28241
    Note: CH ED LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w28241.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    2. Joshua Angrist & Peter Hull & Parag Pathak & Christopher Walters, 2016. "Interpreting Tests of School VAM Validity," American Economic Review, American Economic Association, vol. 106(5), pages 388-392, May.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. Kane, Thomas J. & Rockoff, Jonah E. & Staiger, Douglas O., 2008. "What does certification tell us about teacher effectiveness? Evidence from New York City," Economics of Education Review, Elsevier, vol. 27(6), pages 615-631, December.
    5. Borusyak, Kirill & Hull, Peter, 2020. "Non-Random Exposure to Exogenous Shocks: Theory and Applications," CEPR Discussion Papers 15319, C.E.P.R. Discussion Papers.
    6. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell & Rocío Titiunik, 2019. "Regression Discontinuity Designs Using Covariates," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 442-451, July.
    7. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    8. Angrist, Joshua D., 1991. "Grouped-data estimation and testing in simple labor-supply models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 243-266, February.
    9. Andrew Bacher-Hicks & Thomas J. Kane & Douglas O. Staiger, 2014. "Validating Teacher Effect Estimates Using Changes in Teacher Assignments in Los Angeles," NBER Working Papers 20657, National Bureau of Economic Research, Inc.
    10. Jason Abaluck & Mauricio Caceres Bravo & Peter Hull: & Amanda Starc, 2021. "Mortality Effects and Choice Across Private Health Insurance Plans," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1557-1610.
    11. David J. Deming, 2014. "Using School Choice Lotteries to Test Measures of School Effectiveness," American Economic Review, American Economic Association, vol. 104(5), pages 406-411, May.
    12. Stacy Berg Dale & Alan B. Krueger, 2002. "Estimating the Payoff to Attending a More Selective College: An Application of Selection on Observables and Unobservables," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1491-1527.
    13. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    14. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility II: County-Level Estimates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1163-1228.
    15. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    16. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    17. Jack Mountjoy & Brent Hickman, 2020. "The Returns to College(s): Estimating Value-Added and Match Effects in Higher Education," Working Papers 2020-08, Becker Friedman Institute for Research In Economics.
    18. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars J. Kirkebøen, 2021. "School value-added and longterm student outcomes," Discussion Papers 970, Statistics Norway, Research Department.
    2. Parag A. Pathak & Kevin Ren & Camille Terrier, 2021. "From immediate acceptance to deferred acceptance: effects on school admissions and achievement in England," CEP Discussion Papers dp1815, Centre for Economic Performance, LSE.
    3. Christine Mulhern & Isaac M. Opper, 2021. "Measuring and Summarizing the Multiple Dimensions of Teacher Effectiveness," CESifo Working Paper Series 9263, CESifo.
    4. Jiafeng Chen, 2021. "Nonparametric Treatment Effect Identification in School Choice," Papers 2112.03872, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bär, Marlies & Bakx, Pieter & Wouterse, Bram & van Doorslaer, Eddy, 2022. "Estimating the health value added by nursing homes," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 1-23.
    2. Naven, Matthew & Whalen, Daniel, 2022. "The signaling value of university rankings: Evidence from top 14 law schools," Economics of Education Review, Elsevier, vol. 89(C).
    3. Bar, M.; & Bakx, P.; & Wouterse, B.; & van Doorslaer, Eddy.;, 2022. "Estimating the health value added by nursing homes," Health, Econometrics and Data Group (HEDG) Working Papers 22/12, HEDG, c/o Department of Economics, University of York.
    4. Naven, Matthew, 2019. "Human-Capital Formation During Childhood and Adolescence: Evidence from School Quality and Postsecondary Success in California," MPRA Paper 97716, University Library of Munich, Germany.
    5. Joshua D. Angrist & Peter D. Hull & Parag A. Pathak & Christopher R. Walters, 2017. "Leveraging Lotteries for School Value-Added: Testing and Estimation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 871-919.
    6. Bruhn, Jesse & Imberman, Scott & Winters, Marcus, 2022. "Regulatory arbitrage in teacher hiring and retention: Evidence from Massachusetts Charter Schools," Journal of Public Economics, Elsevier, vol. 215(C).
    7. Atila Abdulkadiroğlu & Parag A. Pathak & Jonathan Schellenberg & Christopher R. Walters, 2020. "Do Parents Value School Effectiveness?," American Economic Review, American Economic Association, vol. 110(5), pages 1502-1539, May.
    8. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    9. Akyol, Pelin & Krishna, Kala, 2017. "Preferences, selection, and value added: A structural approach," European Economic Review, Elsevier, vol. 91(C), pages 89-117.
    10. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    11. Mookerjee, Sulagna & Slichter, David, 2023. "Test scores, schools, and the geography of economic opportunity," Journal of Urban Economics, Elsevier, vol. 137(C).
    12. Hermann, Zoltán & Horváth, Hedvig, 2022. "Tanári eredményesség és tanár-diák összepárosítás az általános iskolákban. Empirikus mintázatok három magyarországi tankerület adatai alapján [Teacher effectiveness and teacher-student matching in ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1377-1406.
    13. Lars J. Kirkebøen, 2021. "School value-added and longterm student outcomes," Discussion Papers 970, Statistics Norway, Research Department.
    14. Michael Gilraine & Jiaying Gu & Robert McMillan, 2020. "A New Method for Estimating Teacher Value-Added," NBER Working Papers 27094, National Bureau of Economic Research, Inc.
    15. Justine Hastings & Christopher A. Neilson & Seth D. Zimmerman, 2015. "The Effects of Earnings Disclosure on College Enrollment Decisions," Working Papers 2015-1, Princeton University. Economics Department..
    16. Araujo P., Maria Daniela & Quis, Johanna Sophie, 2021. "Parents can tell! Evidence on classroom quality differences in German primary schools," BERG Working Paper Series 172, Bamberg University, Bamberg Economic Research Group.
    17. Marianne Bitler & Sean Corcoran & Thurston Domina & Emily Penner, 2019. "Teacher Effects on Student Achievement and Height: A Cautionary Tale," NBER Working Papers 26480, National Bureau of Economic Research, Inc.
    18. Araujo P., María Daniela & Quis, Johanna Sophie, 2021. "Teacher Effects in Germany: Evidence from Elementary School," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242457, Verein für Socialpolitik / German Economic Association.
    19. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    20. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • I28 - Health, Education, and Welfare - - Education - - - Government Policy
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:28241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.