IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/27528.html
   My bibliography  Save this paper

Identification and Estimation of Undetected COVID-19 Cases Using Testing Data from Iceland

Author

Listed:
  • Karl M. Aspelund
  • Michael C. Droste
  • James H. Stock
  • Christopher D. Walker

Abstract

In the early stages of the COVID-19 pandemic, international testing efforts tended to target individuals whose symptoms and/or jobs placed them at a high presumed risk of infection. Testing regimes of this sort potentially result in a high proportion of cases going undetected. Quantifying this parameter, which we refer to as the undetected rate, is an important contribution to the analysis of the early spread of the SARS-CoV-2 virus. We show that partial identification techniques can credibly deal with the data problems that common COVID-19 testing programs induce (i.e. excluding quarantined individuals from testing and low participation in random screening programs). We use public data from two Icelandic testing regimes during the first month of the outbreak and estimate an identified interval for the undetected rate. Our main approach estimates that the undetected rate was between 89% and 93% before the medical system broadened its eligibility criteria and between 80% and 90% after.

Suggested Citation

  • Karl M. Aspelund & Michael C. Droste & James H. Stock & Christopher D. Walker, 2020. "Identification and Estimation of Undetected COVID-19 Cases Using Testing Data from Iceland," NBER Working Papers 27528, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:27528
    Note: EFG EH TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w27528.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F. & Molinari, Francesca, 2021. "Estimating the COVID-19 infection rate: Anatomy of an inference problem," Journal of Econometrics, Elsevier, vol. 220(1), pages 181-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Health > Measurement

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel W. Sacks & Nir Menachemi & Peter Embi & Coady Wing, 2020. "What can we learn about SARS-CoV-2 prevalence from testing and hospital data?," Papers 2008.00298, arXiv.org, revised Mar 2021.
    2. Antonio Diez de los Rios, 2022. "A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
    3. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    4. Andrew T. Levin & William P. Hanage & Nana Owusu-Boaitey & Kensington B. Cochran & Seamus P. Walsh & Gideon Meyerowitz-Katz, 2020. "Assessing the Age Specificity of Infection Fatality Rates for COVID-19: Systematic Review, Meta-analysis, & Public Policy Implications," NBER Working Papers 27597, National Bureau of Economic Research, Inc.
    5. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    6. Deniz Dutz & Michael Greenstone & Ali Hortaçsu & Santiago Lacouture & Magne Mogstad & Azeem M. Shaikh & Alexander Torgovitsky & Winnie van Dijk, 2023. "Representation and Hesitancy in Population Health Research: Evidence from a COVID-19 Antibody Study," NBER Working Papers 30880, National Bureau of Economic Research, Inc.
    7. Junic Kim & Kelly Ashihara, 2020. "National Disaster Management System: COVID-19 Case in Korea," IJERPH, MDPI, vol. 17(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    3. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    4. Badi H. Baltagi & Ying Deng & Jing Li & Zhenlin Yang, 2023. "Cities in a pandemic: Evidence from China," Journal of Regional Science, Wiley Blackwell, vol. 63(2), pages 379-408, March.
    5. Valentina Aprigliano & Alessandro Borin & Francesco Paolo Conteduca & Simone Emiliozzi & Marco Flaccadoro & Sabina Marchetti & Stefania Villa, 2021. "Forecasting Italian GDP growth with epidemiological data," Questioni di Economia e Finanza (Occasional Papers) 664, Bank of Italy, Economic Research and International Relations Area.
    6. Nicholas W. Papageorge & Matthew V. Zahn & Michèle Belot & Eline Broek-Altenburg & Syngjoo Choi & Julian C. Jamison & Egon Tripodi, 2021. "Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(2), pages 691-738, April.
    7. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    8. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    9. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    10. Mauro Caselli & Andrea Fracasso & Sergio Scicchitano, 2022. "From the lockdown to the new normal: individual mobility and local labor market characteristics following the COVID-19 pandemic in Italy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1517-1550, October.
    11. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    12. Garriga, Carlos & Manuelli, Rody & Sanghi, Siddhartha, 2022. "Optimal management of an epidemic: Lockdown, vaccine and value of life," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    13. Zakharov, Nikita, 2020. "The protective effect of smoking against COVID-19: A population-based study using instrumental variables," MPRA Paper 101267, University Library of Munich, Germany.
    14. Jung, Juergen & Manley, James & Shrestha, Vinish, 2021. "Coronavirus infections and deaths by poverty status: The effects of social distancing," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 311-330.
    15. Michael Barnett & Greg Buchak & Constantine Yannelis, 2023. "Epidemic responses under uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(2), pages 2208111120-, January.
    16. Franco Peracchi & Daniele Terlizzese, 2020. "Estimating the prevalence of the COVID-19 infection, with an application to Italy," EIEF Working Papers Series 2013, Einaudi Institute for Economics and Finance (EIEF), revised May 2020.
    17. Huberts, Nick F.D. & Thijssen, Jacco J.J., 2023. "Optimal timing of non-pharmaceutical interventions during an epidemic," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1366-1389.
    18. Daniel W. Sacks & Nir Menachemi & Peter Embi & Coady Wing, 2020. "What can we learn about SARS-CoV-2 prevalence from testing and hospital data?," Papers 2008.00298, arXiv.org, revised Mar 2021.
    19. Shin KINOSHITA & Masayuki SATO & Takanori IDA, 2022. "Bayesian Probability Revision and Infection Prevention Behavior in Japan : A Quantitative Analysis of the First Wave of COVID-19," Discussion papers e-22-004, Graduate School of Economics , Kyoto University.
    20. Gourieroux, C. & Jasiak, J., 2023. "Time varying Markov process with partially observed aggregate data: An application to coronavirus," Journal of Econometrics, Elsevier, vol. 232(1), pages 35-51.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:27528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.