IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.02486.html
   My bibliography  Save this paper

COVID-19: Tail Risk and Predictive Regressions

Author

Listed:
  • Walter Distaso
  • Rustam Ibragimov
  • Alexander Semenov
  • Anton Skrobotov

Abstract

The paper focuses on econometrically justified robust analysis of the effects of the COVID-19 pandemic on financial markets in different countries across the World. It provides the results of robust estimation and inference on predictive regressions for returns on major stock indexes in 23 countries in North and South America, Europe, and Asia incorporating the time series of reported infections and deaths from COVID-19. We also present a detailed study of persistence, heavy-tailedness and tail risk properties of the time series of the COVID-19 infections and death rates that motivate the necessity in applications of robust inference methods in the analysis. Econometrically justified analysis is based on heteroskedasticity and autocorrelation consistent (HAC) inference methods, recently developed robust $t$-statistic inference approaches and robust tail index estimation.

Suggested Citation

  • Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2009.02486
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.02486
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F. & Molinari, Francesca, 2021. "Estimating the COVID-19 infection rate: Anatomy of an inference problem," Journal of Econometrics, Elsevier, vol. 220(1), pages 181-192.
    2. Rustam Ibragimov & Jihyun Kim & Anton Skrobotov, 2020. "New robust inference for predictive regressions," Papers 2006.01191, arXiv.org, revised Mar 2023.
    3. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    4. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    5. Nicholas Bloom & Benn Eifert & Aprajit Mahajan & David McKenzie & John Roberts, 2013. "Does Management Matter? Evidence from India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(1), pages 1-51.
    6. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    7. Emil Verner & Győző Gyöngyösi, 2020. "Household Debt Revaluation and the Real Economy: Evidence from a Foreign Currency Debt Crisis," American Economic Review, American Economic Association, vol. 110(9), pages 2667-2702, September.
    8. Alan B. Krueger & Alexandre Mas & Xiaotong Niu, 2017. "The Evolution of Rotation Group Bias: Will the Real Unemployment Rate Please Stand Up?," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 258-264, May.
    9. Rustam Ibragimov & Ulrich K. Müller, 2016. "Inference with Few Heterogeneous Clusters," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 83-96, March.
    10. Ulrich K. Müller & Yulong Wang, 2017. "Fixed- Asymptotic Inference About Tail Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1334-1343, July.
    11. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    12. Esarey, Justin & Menger, Andrew, 2019. "Practical and Effective Approaches to Dealing With Clustered Data," Political Science Research and Methods, Cambridge University Press, vol. 7(3), pages 541-559, July.
    13. Alan S. Blinder & Mark W. Watson, 2016. "Presidents and the US Economy: An Econometric Exploration," American Economic Review, American Economic Association, vol. 106(4), pages 1015-1045, April.
    14. Ibragimov, Rustam & Jaffee, Dwight & Walden, Johan, 2011. "Diversification disasters," Journal of Financial Economics, Elsevier, vol. 99(2), pages 333-348, February.
    15. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    16. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    17. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
    18. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    19. Skrobotov, Anton, 2018. "On bootstrap implementation of likelihood ratio test for a unit root," Economics Letters, Elsevier, vol. 171(C), pages 154-158.
    20. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    21. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    22. Gu, Zhiye & Ibragimov, Rustam, 2018. "The “Cubic Law of the Stock Returns” in emerging markets," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 182-190.
    23. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    24. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    25. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    26. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    27. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    28. Anatolyev Stanislav, 2019. "Volatility filtering in estimation of kurtosis (and variance)," Dependence Modeling, De Gruyter, vol. 7(1), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    2. Rustam Ibragimov & Jihyun Kim & Anton Skrobotov, 2020. "New robust inference for predictive regressions," Papers 2006.01191, arXiv.org, revised Mar 2023.
    3. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    4. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Heavy tails and asymmetry of returns in the Russian stock market," Emerging Markets Review, Elsevier, vol. 32(C), pages 200-219.
    5. Rustam Ibragimov & Marat Ibragimov & Jovlon Karimov & Galiya Yuldasheva, 2012. "Robust Analysis of Income Inequality Dynamics in Russia: t-Statistic Based Approaches," wiiw Balkan Observatory Working Papers 105, The Vienna Institute for International Economic Studies, wiiw.
    6. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Sanctions and the Russian stock market," Research in International Business and Finance, Elsevier, vol. 40(C), pages 150-162.
    7. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
    8. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    9. Marat Ibragimov & Rustam Ibragimov, 2018. "Heavy tails and upper-tail inequality: The case of Russia," Empirical Economics, Springer, vol. 54(2), pages 823-837, March.
    10. Ankudinov, Andrei & Ibragimov, Rustam & Lebedev, Oleg, 2017. "Extreme movements of the Russian stock market and their consequences for management and economic modeling," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 75-92.
    11. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    12. Alexis Akira Toda & Yulong Wang, 2021. "Efficient minimum distance estimation of Pareto exponent from top income shares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 228-243, March.
    13. Rustam Ibragimov & Paul Kattuman & Anton Skrobotov, 2021. "Robust Inference on Income Inequality: $t$-Statistic Based Approaches," Papers 2105.05335, arXiv.org, revised Nov 2021.
    14. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    15. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    16. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    17. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    18. Ibragimov, Rustam, 2014. "On the robustness of location estimators in models of firm growth under heavy-tailedness," Journal of Econometrics, Elsevier, vol. 181(1), pages 25-33.
    19. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    20. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.02486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.