IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23998.html
   My bibliography  Save this paper

A Note on Variance Decomposition with Local Projections

Author

Listed:
  • Yuriy Gorodnichenko
  • Byoungchan Lee

Abstract

We propose and study properties of several estimators of variance decomposition in the local-projections framework. We find for empirically relevant sample sizes that, after being bias corrected with bootstrap, our estimators perform well in simulations. We also illustrate the workings of our estimators empirically for monetary policy and productivity shocks.

Suggested Citation

  • Yuriy Gorodnichenko & Byoungchan Lee, 2017. "A Note on Variance Decomposition with Local Projections," NBER Working Papers 23998, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23998
    Note: EFG ME TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23998.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. Christina D. Romer & David H. Romer, 2010. "The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks," American Economic Review, American Economic Association, vol. 100(3), pages 763-801, June.
    5. Mikkel Plagborg-Møller & Christian K. Wolf, 2022. "Instrumental Variable Identification of Dynamic Variance Decompositions," Journal of Political Economy, University of Chicago Press, vol. 130(8), pages 2164-2202.
    6. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    7. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Olivier Coibion, 2012. "Are the Effects of Monetary Policy Shocks Big or Small?," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 1-32, April.
    10. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Coibion, Olivier & Gorodnichenko, Yuriy & Kueng, Lorenz & Silvia, John, 2017. "Innocent Bystanders? Monetary policy and inequality," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 70-89.
    14. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    15. Valerie A. Ramey, 2011. "Identifying Government Spending Shocks: It's all in the Timing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 1-50.
    16. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    17. Cramer, J. S., 1987. "Mean and variance of R2 in small and moderate samples," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 253-266, July.
    18. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    19. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    20. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    21. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, January.
    22. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    23. Barakchian, S. Mahdi & Crowe, Christopher, 2013. "Monetary policy matters: Evidence from new shocks data," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 950-966.
    24. Lutz Kilian & Yun Jung Kim, 2011. "How Reliable Are Local Projection Estimators of Impulse Responses?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1460-1466, November.
    25. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnichon, Regis & Mesters, Geert, 2021. "The Phillips multiplier," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 689-705.
    2. Lodge, David & Manu, Ana-Simona, 2022. "EME financial conditions: Which global shocks matter?," Journal of International Money and Finance, Elsevier, vol. 120(C).
    3. Colin Weiss, 2020. "Contractionary Devaluation Risk: Evidence from the Free Silver Movement, 1878-1900," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 705-720, October.
    4. Joscha Beckmann & Mariarosaria Comunale, 2020. "Exchange rate fluctuations and the financial channel in emerging economies," Bank of Lithuania Working Paper Series 83, Bank of Lithuania.
    5. Zeno Enders & Franziska Hünnekes & Gernot Müller, 2022. "Firm Expectations and Economic Activity," Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2396-2439.
    6. Ilut, Cosmin & Saijo, Hikaru, 2021. "Learning, confidence, and business cycles," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 354-376.
    7. Mariarosaria Comunale, 2019. "An investigation of the exchange rate pass-through in the Baltic states," CAMA Working Papers 2019-60, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Antoine Levy & Mr. Luca A Ricci & Alejandro M. Werner, 2020. "The Sources of Fiscal Fluctuations," IMF Working Papers 2020/220, International Monetary Fund.
    9. Choi, Chi-Young & Chudik, Alexander, 2019. "Estimating impulse response functions when the shock series is observed," Economics Letters, Elsevier, vol. 180(C), pages 71-75.
    10. Jason Lennard, 2020. "Uncertainty and the Great Slump," Economic History Review, Economic History Society, vol. 73(3), pages 844-867, August.
    11. repec:zbw:bofitp:2021_011 is not listed on IDEAS
    12. Pierluigi Balduzzi & Emanuele Brancati & Marco Brianti & Fabio Schiantarelli, 2019. "Populism, Political Risk and the Economy: Lessons from Italy," Boston College Working Papers in Economics 989, Boston College Department of Economics, revised 28 Apr 2020.
    13. Joscha Beckmann & Mariarosaria Comunale, 2020. "Exchange rate fluctuations and the financial channel in emerging economies," Bank of Lithuania Working Paper Series 83, Bank of Lithuania.
    14. Ben Zeev, Nadav, 2019. "Global credit supply shocks and exchange rate regimes," Journal of International Economics, Elsevier, vol. 116(C), pages 1-32.
    15. Ziegenbein, Alexander, 2021. "Macroeconomic shocks and Okun’s Law," Economics Letters, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    2. ChaeWon Baek & Byoungchan Lee, 2022. "A Guide to Autoregressive Distributed Lag Models for Impulse Response Estimations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1101-1122, October.
    3. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    4. Ruhollah Eskandari & Morteza Zamanian, 2023. "Heterogeneous responses to corporate marginal tax rates: Evidence from small and large firms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(7), pages 1018-1047, November.
    5. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    6. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    7. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    8. Byoungchan Lee, 2020. "Business Cycles and Earnings Inequality," HKUST CEP Working Papers Series 202001, HKUST Center for Economic Policy.
    9. Thore Schlaak & Malte Rieth & Maximilian Podstawski, 2023. "Monetary policy, external instruments, and heteroskedasticity," Quantitative Economics, Econometric Society, vol. 14(1), pages 161-200, January.
    10. Choi, Chi-Young & Chudik, Alexander, 2019. "Estimating impulse response functions when the shock series is observed," Economics Letters, Elsevier, vol. 180(C), pages 71-75.
    11. Òscar Jordà & Alan M. Taylor, 2024. "Local Projections," NBER Working Papers 32822, National Bureau of Economic Research, Inc.
    12. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," University of Göttingen Working Papers in Economics 404, University of Goettingen, Department of Economics.
    13. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    14. Inoue, Atsushi & Rossi, Barbara & Wang, Yiru, 2024. "Has the Phillips Curve Flattened?," CEPR Discussion Papers 18846, C.E.P.R. Discussion Papers.
    15. Eric Monnet & Mr. Damien Puy, 2019. "One Ring to Rule Them All? New Evidence on World Cycles," IMF Working Papers 2019/202, International Monetary Fund.
    16. Ho, Paul & Lubik, Thomas A. & Matthes, Christian, 2024. "Averaging impulse responses using prediction pools," Journal of Monetary Economics, Elsevier, vol. 146(C).
    17. Alisdair McKay & Christian K. Wolf, 2023. "What Can Time‐Series Regressions Tell Us About Policy Counterfactuals?," Econometrica, Econometric Society, vol. 91(5), pages 1695-1725, September.
    18. Ben Zeev, Nadav, 2018. "What can we learn about news shocks from the late 1990s and early 2000s boom-bust period?," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 94-105.
    19. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    20. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.