IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/20509.html
   My bibliography  Save this paper

Misclassification in Binary Choice Models

Author

Listed:
  • Bruce Meyer
  • Nikolas Mittag

Abstract

While measurement error in the dependent variable does not lead to bias in some well-known cases, with a binary dependent variable the bias can be pronounced. In binary choice, Hausman, Abrevaya and Scott-Morton (1998) show that the marginal effects in the observed data differ from the true ones in proportion to the sum of the misclassification probabilities when the errors are unrelated to covariates. We provide two sets of results that extend this analysis. First, we derive the asymptotic bias in parametric models allowing for correlation of the errors with both observables and unobservables. Second, we examine the bias in a prototypical application in two different datasets, using a variety of methods that differ in the amount of knowledge that is assumed about the error process. Our application is receipt of food stamps, the largest and most widely received welfare program in the U.S. Monte Carlo results and our empirical application show that the bias formulas accurately describe the bias in finite samples. Our results indicate that the robustness of signs and relative magnitudes of coefficients implied by the earlier proportionality results does not necessarily extend to estimated Probit coefficients, and does not apply when errors are correlated with covariates. Using administrative records linked to survey data as validation data, we evaluate estimators that are consistent under misclassification. Estimators based on the assumption that misclassification is independent of the covariates are sensitive to their functional form assumptions and aggravate the bias if the conditional independence assumption is invalid in all cases we examine. On the other hand, estimators that allow misreporting to be correlated with the covariates perform well if an accurate model of misreporting or validation data are available. Estimators that incorporate more information about the errors, such as aggregate underreporting rates, tend to be more robust to misspecification of the misreporting model.

Suggested Citation

  • Bruce Meyer & Nikolas Mittag, 2014. "Misclassification in Binary Choice Models," NBER Working Papers 20509, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20509
    Note: AG CH EH LS PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w20509.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    2. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.
    3. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    4. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    5. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
    6. Lance Lochner & Enrico Moretti, 2004. "The Effect of Education on Crime: Evidence from Prison Inmates, Arrests, and Self-Reports," American Economic Review, American Economic Association, vol. 94(1), pages 155-189, March.
    7. repec:adr:anecst:y:1999:i:55-56:p:09 is not listed on IDEAS
    8. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
    9. Poterba, James M & Summers, Lawrence H, 1995. "Unemployment Benefits and Labor Market Transitions: A Multinomial Logit Model with Errors in Classification," The Review of Economics and Statistics, MIT Press, vol. 77(2), pages 207-216, May.
    10. Bollinger, Christopher R & David, Martin H, 2001. "Estimation with Response Error and Nonresponse: Food-Stamp Participation in the SIPP," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 129-141, April.
    11. Jason Abrevaya & Jerry A. Hausman, 1999. "Semiparametric Estimation with Mismeasured Dependent Variables: An Application to Duration Models for Unemployment Spells," Annals of Economics and Statistics, GENES, issue 55-56, pages 243-275.
    12. Ruud, Paul A, 1983. "Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models," Econometrica, Econometric Society, vol. 51(1), pages 225-228, January.
    13. Ruud, Paul A., 1986. "Consistent estimation of limited dependent variable models despite misspecification of distribution," Journal of Econometrics, Elsevier, vol. 32(1), pages 157-187, June.
    14. Steven D. Levitt, 1998. "Juvenile Crime and Punishment," Journal of Political Economy, University of Chicago Press, vol. 106(6), pages 1156-1185, December.
    15. AIGNER, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," LIDAM Reprints CORE 130, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    17. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    18. Zvi Eckstein & Kenneth I. Wolpin, 1999. "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," Econometrica, Econometric Society, vol. 67(6), pages 1295-1340, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
    2. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    3. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
    4. Samuel Bazzi & Lisa Cameron & Simone Schaner & Firman Witoelar, 2021. "Information, Intermediaries, and International Migration," Melbourne Institute Working Paper Series wp2021n30, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    5. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    6. Ijeoma P. Edoka, 2017. "Implications of Misclassification Errors in Empirical Studies of Adolescent Smoking Behaviours," Health Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 486-499, April.
    7. Jorge González Chapela, 2022. "A Binary Choice Model with Sample Selection and Covariate-Related Misclassification," Econometrics, MDPI, vol. 10(2), pages 1-20, March.
    8. Yokoo, Hide-Fumi & Arimura, Toshi H. & Chattopadhyay, Mriduchhanda & Katayama, Hajime, 2023. "Subjective risk belief function in the field: Evidence from cooking fuel choices and health in India," Journal of Development Economics, Elsevier, vol. 161(C).
    9. Kerstin Bruckmeier & Regina T. Riphahn & Jürgen Wiemers, 2021. "Misreporting of program take-up in survey data and its consequences for measuring non-take-up: new evidence from linked administrative and survey data," Empirical Economics, Springer, vol. 61(3), pages 1567-1616, September.
    10. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    11. Giovanni Mastrobuoni & Pierre Rialland, 2020. "Partners in Crime: Evidence from Recidivating Inmates," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 6(2), pages 255-273, July.
    12. Bruce Meyer & Nikolas Mittag, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Working Papers 2017-075, Human Capital and Economic Opportunity Working Group.
    13. Bruckmeier, Kerstin & Riphahn, Regina T. & Wiemers, Jürgen, 2019. "Benefit underreporting in survey data and its consequences for measuring non-take-up: new evidence from linked administrative and survey data," IAB-Discussion Paper 201906, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    14. Andreas Ferrara & Price Fishback, 2024. "Discrimination, Migration, and Economic Outcomes: Evidence from World War I," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1201-1219, September.
    15. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    16. Jones, Jordan & Courtemanche, Charles & Denteh, Augustine & Marton, James & Tchernis, Rusty, 2021. "Do State Snap Policies Influence Program Participation among Seniors?," IZA Discussion Papers 14564, Institute of Labor Economics (IZA).
    17. Robert Paul Hartley & Carlos Lamarche & James P. Ziliak, 2022. "Welfare Reform and the Intergenerational Transmission of Dependence," Journal of Political Economy, University of Chicago Press, vol. 130(3), pages 523-565.
    18. Jones, Jordan W. & Marton, James & Courtemanche, Charles & Tchernis, Rusty & Denteh, Augustine, 2021. "Policy Determinants of Senior SNAP Participation," 2021 Annual Meeting, August 1-3, Austin, Texas 313925, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Bruce D. & Mittag, Nikolas, 2017. "Misclassification in binary choice models," Journal of Econometrics, Elsevier, vol. 200(2), pages 295-311.
    2. Craig Gundersen & Brent Kreider, 2008. "Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Nonclassical Measurement Error?," Journal of Human Resources, University of Wisconsin Press, vol. 43(2), pages 352-382.
    3. Winter, Joachim, 0000. "Bracketing effects in categorized survey questions and the measurement of economic quantities," Sonderforschungsbereich 504 Publications 02-35, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    4. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    5. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    6. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    7. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    8. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    9. Brachet, Tanguy, 2008. "Maternal Smoking, Misclassification, and Infant Health," MPRA Paper 21466, University Library of Munich, Germany.
    10. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    11. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    12. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    13. Adele Bergin, 2015. "Employer Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," LABOUR, CEIS, vol. 29(2), pages 194-223, June.
    14. Kyung Min Kang & Robert A. Moffitt, 2019. "The Effect of SNAP and School Food Programs on Food Security, Diet Quality, and Food Spending: Sensitivity to Program Reporting Error," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 156-201, July.
    15. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    16. Wossen, Tesfamicheal & Abay, Kibrom A. & Abdoulaye, Tahirou, 2022. "Misperceiving and misreporting input quality: Implications for input use and productivity," Journal of Development Economics, Elsevier, vol. 157(C).
    17. Erich Battistin & Barbara Sianesi, 2006. "Misreported schooling and returns to education: evidence from the UK," CeMMAP working papers CWP07/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Lorenzo Almada & Ian McCarthy & Rusty Tchernis, 2016. "What Can We Learn about the Effects of Food Stamps on Obesity in the Presence of Misreporting?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(4), pages 997-1017.
    19. Adele Bergin, 2013. "Job Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," Economics Department Working Paper Series n240-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    20. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • H53 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.