Empirical Bayes Forecasts of One Time Series Using Many Predictors
Author
Abstract
Suggested Citation
Note: TWP
Download full text from publisher
Other versions of this item:
- Thomas Knox & James H. Stock & Mark W. Watson, 2000. "Empirical Bayes Forecasts of One Time Series Using Many Predictors," Econometric Society World Congress 2000 Contributed Papers 1421, Econometric Society.
References listed on IDEAS
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Chamberlain, Gary & Imbens, Guido, 1996.
"Hierarchical Bayes Models with Many Instrumental Variables,"
Scholarly Articles
3221489, Harvard University Department of Economics.
- Gary Chamberlain & Guido W. Imbens, 1996. "Hierarchical Bayes Models with Many Instrumental Variables," Harvard Institute of Economic Research Working Papers 1781, Harvard - Institute of Economic Research.
- Gary Chamberlain & Guido W. Imbens, 1996. "Hierarchical Bayes Models with Many Instrumental Variables," NBER Technical Working Papers 0204, National Bureau of Economic Research, Inc.
- Joshua D. Angrist & Alan B. Keueger, 1991.
"Does Compulsory School Attendance Affect Schooling and Earnings?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
- Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," NBER Working Papers 3572, National Bureau of Economic Research, Inc.
- Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
- James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
- Hardle, W. & Hart, J. & Marron, J. & Tsybakov, A., 1991. "Bandwidth choice for average derivative estimation," LIDAM Discussion Papers CORE 1991049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bernanke, Ben S. & Boivin, Jean, 2003.
"Monetary policy in a data-rich environment,"
Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
- Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
- Gary Koop & Simon M. Potter, 2003.
"Forecasting in large macroeconomic panels using Bayesian Model Averaging,"
Staff Reports
163, Federal Reserve Bank of New York.
- Gary Koop & Simon Potter, 2003. "Forecasting in Large Macroeconomic Panels using Bayesian Model Averaging," Discussion Papers in Economics 04/16, Division of Economics, School of Business, University of Leicester.
- Todd E. Clark, 2004.
"Can out-of-sample forecast comparisons help prevent overfitting?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
- Todd E. Clark, 2000. "Can out-of-sample forecast comparisons help prevent overfitting?," Research Working Paper RWP 00-05, Federal Reserve Bank of Kansas City.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joshua D. Angrist & Alan B. Krueger, 2001.
"Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments,"
Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
- Joshua Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," NBER Working Papers 8456, National Bureau of Economic Research, Inc.
- Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
- Angrist, J D & Imbens, G W & Krueger, A B, 1999.
"Jackknife Instrumental Variables Estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
- Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
- Peter C. B. Phillips, 2003.
"Laws and Limits of Econometrics,"
Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
- Peter C.B. Phillips, 2003. "Laws and Limits of Econometrics," Cowles Foundation Discussion Papers 1397, Cowles Foundation for Research in Economics, Yale University.
- Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Liu, Dandan & Jansen, Dennis W., 2007. "Macroeconomic forecasting using structural factor analysis," International Journal of Forecasting, Elsevier, vol. 23(4), pages 655-677.
- Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
- Wenjie Wang & Qingfeng Liu, 2015. "Bootstrap-based Selection for Instrumental Variables Model," Economics Bulletin, AccessEcon, vol. 35(3), pages 1886-1896.
- Bekker, Paul A. & Lawford, Steve, 2008.
"Symmetry-based inference in an instrumental variable setting,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
- BEKKER, Paul A. & LAWFORD, Steve, 2009. "Symmetry-based inference in an instrumental variable setting," LIDAM Reprints CORE 1987, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019.
"On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
- Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2016. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Bristol Economics Discussion Papers 16/674, School of Economics, University of Bristol, UK, revised 08 Aug 2017.
- Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Health, Econometrics and Data Group (HEDG) Working Papers 17/22, HEDG, c/o Department of Economics, University of York.
- Windmeijer, Frank & Farbmacher, Helmut & Davies, Neil & Smith, George Davey, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168196, Verein für Socialpolitik / German Economic Association.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005.
"Leading Indicators for Euro‐area Inflation and GDP Growth,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2003. "Leading Indicators for Euro-area Inflation and GDP Growth," Working Papers 235, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021.
"Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments,"
Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
- Federico Crudu & Giovanni Mellace & Zsolt Sandor, 2017. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 761, Department of Economics, University of Siena.
- Federico Crudu & Giovanni Mellace & Zsolt Sándor, 2020. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 821, Department of Economics, University of Siena.
- Santos, Sonia de Lucas & Rodríguez, María Jesús Delgado & Ayuso, Inmaculada Álvarez, 2011. "Application of factor models for the identification of countries sharing international reference-cycles," Economic Modelling, Elsevier, vol. 28(6), pages 2424-2431.
- Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
- Christopher R. Knittel & Konstantinos Metaxoglou, 2008. "Estimation of Random Coefficient Demand Models: Challenges, Difficulties and Warnings," NBER Working Papers 14080, National Bureau of Economic Research, Inc.
- Shibamoto, Masahiko, 2008. "The estimation of monetary policy reaction function in a data-rich environment: The case of Japan," Japan and the World Economy, Elsevier, vol. 20(4), pages 497-520, December.
- O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007.
"Forecasting inflation using economic indicators: the case of France,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
- Bruneau, C. & De Bandt, O. & Flageollet, A. & Michaux, E., 2003. "Forecasting Inflation using Economic Indicators: the Case of France," Working papers 101, Banque de France.
- Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
More about this item
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.