IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/821.html
   My bibliography  Save this paper

Inference in instrumental variables models with heteroskedasticity and many instruments

Author

Listed:
  • Federico Crudu
  • Giovanni Mellace
  • Zsolt Sándor

Abstract

This paper proposes novel inference procedures for instrumental variable models in the presence of many, potentially weak instruments that are robust to the presence of heteroskedasticity. First, we provide an Anderson-Rubin-type test for the entire parameter vector that is valid under assumptions weaker than previously proposed Anderson-Rubin-type tests. Second, we consider the case of testing a subset of para- meters under the assumption that a consistent estimator for the parameters not under test exists. We show that under the null the proposed statistics have Gaussian limiting distributions and derive alternative chi square approximations. An extensive simulation study shows the competitive finite sample properties in terms of size and power of our procedures. Finally, we provide an empirical application using college proximity instruments to estimate the returns to education.

Suggested Citation

  • Federico Crudu & Giovanni Mellace & Zsolt Sándor, 2020. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 821, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:821
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/821.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    2. Paul A. Bekker & Jan van der Ploeg, 2005. "Instrumental variable estimation based on grouped data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 239-267, August.
    3. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    4. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
    5. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    6. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    7. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    9. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    10. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    11. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    12. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    13. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    14. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    15. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    16. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    17. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    18. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    19. Hasselt, Martijn van, 2010. "Many Instruments Asymptotic Approximations Under Nonnormal Error Distributions," Econometric Theory, Cambridge University Press, vol. 26(2), pages 633-645, April.
    20. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    21. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    22. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    23. Maurice J. G. Bun & Helmut Farbmacher & Rutger W. Poldermans, 2020. "Finite sample properties of the GMM Anderson–Rubin test," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1042-1056, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    2. Anatolyev, Stanislav & Sølvsten, Mikkel, 2023. "Testing many restrictions under heteroskedasticity," Journal of Econometrics, Elsevier, vol. 236(1).
    3. Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org.
    4. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    5. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org.
    6. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    7. Max-Sebastian Dov`i, 2021. "Inference on the New Keynesian Phillips Curve with Very Many Instrumental Variables," Papers 2101.09543, arXiv.org, revised Mar 2021.
    8. Max-Sebastian Dovì & Anders Bredahl Kock & Sophocles Mavroeidis, 2024. "A Ridge-Regularized Jackknifed Anderson-Rubin Test," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1083-1094, July.
    9. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    10. Anna Mikusheva & Liyang Sun, 2024. "Weak identification with many instruments," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
    11. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Luther Yap, 2024. "Inference with Many Weak Instruments and Heterogeneity," Papers 2408.11193, arXiv.org, revised Sep 2024.
    13. Johannes W. Ligtenberg & Tiemen Woutersen, 2024. "Multidimensional clustering in judge designs," Papers 2406.09473, arXiv.org.
    14. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.
    15. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    2. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    3. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    4. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    5. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    6. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    7. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    8. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.
    9. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    10. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    11. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    12. Han Zhang & Jing Qin & Sonja I. Berndt & Demetrius Albanes & Lu Deng & Mitchell H. Gail & Kai Yu, 2020. "On Mendelian randomization analysis of case‐control study," Biometrics, The International Biometric Society, vol. 76(2), pages 380-391, June.
    13. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    14. Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org.
    15. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP46/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    17. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers 46/17, Institute for Fiscal Studies.
    19. Joel L. Horowitz, 2018. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP52/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.

    More about this item

    Keywords

    Instrumental variables; heteroskedasticity; many instruments; jackknife; inference;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.