IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v17y2001i1p83-103.html
   My bibliography  Save this article

Effects of parameter estimation on prediction densities: a bootstrap approach

Author

Listed:
  • Pascual, Lorenzo
  • Romo, Juan
  • Ruiz, Esther

Abstract

In this paper, we study the impact of parameter estimation on prediction densities using a bootstrap strategy to estimate these densities. We focus on seasonal ARlMA processes with possibly non normal innovations. We compare prediction densities obtained using the Box and Jenkins approach with bootstrap densities which may be constructed taking into account parameter estimation variability (PRR) or using parameter estimates as if they were the true parameters (CB). By means of Monte Carlo experiments, we show that the average coverage of the intervals is closer to the nominal value when intervals are constructed incorporating parameter uncertainty. The effects of parameter estimation are particularly important for small sample sizes and when the error distribution is not Gaussian. We also analyze the effect of the estimation method on the shape of prediction densities comparing prediction densities constructed when the parameters are estimated by OLS and by LAD. We show how, when the error distribution is not Gaussian, the average coverage and length of intervals based on LAD estimates are closer to nominal values than those based on OLS estimates. Finally, the performance of the PRR procedure is illustrated with two empirical examples.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
  • Handle: RePEc:eee:intfor:v:17:y:2001:i:1:p:83-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(00)00069-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    2. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    3. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    4. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.
    5. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Li, 2009. "Bootstrap prediction intervals for threshold autoregressive models," MPRA Paper 13086, University Library of Munich, Germany.
    2. Chan, W.S & Cheung, S.H & Wu, K.H, 2004. "Multiple forecasts with autoregressive time series models: case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 421-430.
    3. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    4. Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
    5. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    6. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
    7. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
    8. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
    9. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    11. Andrés Alonso & Daniel Peña & Juan Romo, 2006. "Introducing model uncertainty by moving blocks bootstrap," Statistical Papers, Springer, vol. 47(2), pages 167-179, March.
    12. Jing Li, 2021. "Block bootstrap prediction intervals for parsimonious first‐order vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 512-527, April.
    13. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
    14. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    15. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    16. repec:lan:wpaper:470 is not listed on IDEAS
    17. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    18. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    19. Dhaoui, Iyad, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:," MPRA Paper 87331, University Library of Munich, Germany.
    20. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
    21. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:17:y:2001:i:1:p:83-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.