IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/23006.html
   My bibliography  Save this paper

Player-centered incomplete cooperative games

Author

Abstract

The computation of a solution concept of a cooperative game usually employs values of all coalitions. However, in somme applications, the values of some of the coalitions might be unknown due to high costs associated with their determination or simply because it is not possible to determine them exactly. We introduce a method to approximate standard solution concepts based only on partial characteristic function of the cooperative game. In this paper, we build on our previous results and generalise the results of our methods to a significantly larger class of structures of incomplete information

Suggested Citation

  • Martin Cerny & Michel Grabisch, 2023. "Player-centered incomplete cooperative games," Documents de travail du Centre d'Economie de la Sorbonne 23006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:23006
    as

    Download full text from publisher

    File URL: http://mse.univ-paris1.fr/pub/mse/CES2023/23006.pdf
    Download Restriction: no

    File URL: https://shs.hal.science/halshs-04070009
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Grabisch & Tomáš Kroupa, 2018. "The cone of supermodular games on finite distributive lattices," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821712, HAL.
    2. Michel Grabisch, 2016. "Set Functions, Games and Capacities in Decision Making," Theory and Decision Library C, Springer, number 978-3-319-30690-2, September.
    3. Willson, Stephen J, 1993. "A Value for Partially Defined Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 371-384.
    4. Satoshi Masuya & Masahiro Inuiguchi, 2016. "A fundamental study for partially defined cooperative games," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 281-306, September.
    5. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Bok & Martin Černý, 2024. "1-convex extensions of incomplete cooperative games and the average value," Theory and Decision, Springer, vol. 96(2), pages 239-268, March.
    2. Martin Černý & Jan Bok & David Hartman & Milan Hladík, 2024. "Positivity and convexity in incomplete cooperative games," Annals of Operations Research, Springer, vol. 340(2), pages 785-809, September.
    3. Satoshi Masuya, 2023. "Two Approaches to Estimate the Shapley Value for Convex Partially Defined Games," Mathematics, MDPI, vol. 12(1), pages 1-15, December.
    4. P. García-Segador & P. Miranda, 2020. "Order cones: a tool for deriving k-dimensional faces of cones of subfamilies of monotone games," Annals of Operations Research, Springer, vol. 295(1), pages 117-137, December.
    5. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    6. Ulrich Faigle & Michel Grabisch, 2019. "Least Square Approximations and Linear Values of Cooperative Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381231, HAL.
    7. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    8. Takao Asano & Hiroyuki Kojima, 2022. "Choquet Integrals and Belief Functions," KIER Working Papers 1077, Kyoto University, Institute of Economic Research.
    9. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    10. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    11. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    12. Sheida Etemadidavan & Andrew J. Collins, 2021. "An Empirical Distribution of the Number of Subsets in the Core Partitions of Hedonic Games," SN Operations Research Forum, Springer, vol. 2(4), pages 1-20, December.
    13. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. O'Neill, Barry & Peleg, Bezalel, 2008. "Lexicographic composition of simple games," Games and Economic Behavior, Elsevier, vol. 62(2), pages 628-642, March.
    15. Michel Grabisch & Peter Sudhölter, 2012. "The bounded core for games with precedence constraints," Annals of Operations Research, Springer, vol. 201(1), pages 251-264, December.
    16. Guni Orshan & Peter Sudhölter, 2012. "Nonsymmetric variants of the prekernel and the prenucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 809-828, November.
    17. Cinfrignini, Andrea & Petturiti, Davide & Vantaggi, Barbara, 2023. "Dynamic bid–ask pricing under Dempster-Shafer uncertainty," Journal of Mathematical Economics, Elsevier, vol. 107(C).
    18. Ehud Lehrer & Roee Teper, 2020. "Set-valued capacities: multi-agenda decision making," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(1), pages 233-248, February.
    19. Michel Grabisch & Tomáš Kroupa, 2018. "The core of supermodular games on finite distributive lattices," Documents de travail du Centre d'Economie de la Sorbonne 18010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Dylan Laplace Mermoud, 2023. "Geometry of Set Functions in Game Theory: Combinatorial and Computational Aspects," Papers 2301.02950, arXiv.org, revised Oct 2023.

    More about this item

    Keywords

    cooperative game; incomplete game; Shapley value; core; tau-value;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:23006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.