IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v96y2024i2d10.1007_s11238-023-09946-8.html
   My bibliography  Save this article

1-convex extensions of incomplete cooperative games and the average value

Author

Listed:
  • Jan Bok

    (Charles University)

  • Martin Černý

    (Charles University)

Abstract

The model of incomplete cooperative games incorporates uncertainty into the classical model of cooperative games by considering a partial characteristic function. Thus the values for some of the coalitions are not known. The main focus of this paper is 1-convexity under this framework. We are interested in two heavily intertwined questions. First, given an incomplete game, how can we fill in the missing values to obtain a complete 1-convex game? Second, how to determine in a rational, fair, and efficient way the payoffs of players based only on the known values of coalitions? We illustrate the analysis with two classes of incomplete games—minimal incomplete games and incomplete games with defined upper vector. To answer the first question, for both classes, we provide a description of the set of 1-convex extensions in terms of its extreme points and extreme rays. Based on the description of the set of 1-convex extensions, we introduce generalisations of three solution concepts for complete games, namely the $$\tau $$ τ -value, the Shapley value and the nucleolus. For minimal incomplete games, we show that all of the generalised values coincide. We call it the average value and provide different axiomatisations. For incomplete games with defined upper vector, we show that the generalised values do not coincide in general. This highlights the importance and also the difficulty of considering more general classes of incomplete games.

Suggested Citation

  • Jan Bok & Martin Černý, 2024. "1-convex extensions of incomplete cooperative games and the average value," Theory and Decision, Springer, vol. 96(2), pages 239-268, March.
  • Handle: RePEc:kap:theord:v:96:y:2024:i:2:d:10.1007_s11238-023-09946-8
    DOI: 10.1007/s11238-023-09946-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-023-09946-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-023-09946-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willson, Stephen J, 1993. "A Value for Partially Defined Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 371-384.
    2. Tijs, S.H., 1987. "An axiomatization of the ô-value," Other publications TiSEM 5536ac66-86f3-49fb-9e7d-2, Tilburg University, School of Economics and Management.
    3. Michel Grabisch, 2016. "Set Functions, Games and Capacities in Decision Making," Theory and Decision Library C, Springer, number 978-3-319-30690-2, September.
    4. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Models in Cooperative Game Theory," Springer Books, Springer, edition 0, number 978-3-540-77954-4, February.
    5. Dehez, Pierre, 2021. "1-convex transferable utility games, a reappraisal," LIDAM Discussion Papers CORE 2021016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. René van den Brink, 2002. "An axiomatization of the Shapley value using a fairness property," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(3), pages 309-319.
    7. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Satoshi Masuya & Masahiro Inuiguchi, 2016. "A fundamental study for partially defined cooperative games," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 281-306, September.
    9. Roth, Alvin, 2012. "The Shapley Value as a von Neumann-Morgenstern Utility," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 6, pages 1-9.
    10. M. Josune Albizuri & Satoshi Masuya & José M. Zarzuelo, 2022. "Characterization of a value for games under restricted cooperation," Annals of Operations Research, Springer, vol. 318(2), pages 773-785, November.
    11. R. Branzei & O. Branzei & S. Alparslan Gök & S. Tijs, 2010. "Cooperative interval games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 397-411, September.
    12. repec:spr:thdchp:978-3-319-30690-2_2 is not listed on IDEAS
    13. Tijs, Stef H., 1987. "An axiomatization of the [tau]-value," Mathematical Social Sciences, Elsevier, vol. 13(2), pages 177-181, April.
    14. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, September.
    15. Theo Driessen & Anna Khmelnitskaya & Jordi Sales, 2012. "1-concave basis for TU games and the library game," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 578-591, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Černý & Jan Bok & David Hartman & Milan Hladík, 2024. "Positivity and convexity in incomplete cooperative games," Annals of Operations Research, Springer, vol. 340(2), pages 785-809, September.
    2. Satoshi Masuya, 2023. "Two Approaches to Estimate the Shapley Value for Convex Partially Defined Games," Mathematics, MDPI, vol. 12(1), pages 1-15, December.
    3. Martin Cerny & Michel Grabisch, 2023. "Player-centered incomplete cooperative games," Documents de travail du Centre d'Economie de la Sorbonne 23006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    5. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2020. "Allocating extra revenues from broadcasting sports leagues," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 65-73.
    6. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    7. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.
    8. Wenzhong Li & Genjiu Xu & Hao Sun, 2020. "Maximizing the Minimal Satisfaction—Characterizations of Two Proportional Values," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    9. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    10. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
    11. Gómez-Rodríguez, Marcos & Davila-Pena, Laura & Casas-Méndez, Balbina, 2024. "Cost allocation problems on highways with grouped users," European Journal of Operational Research, Elsevier, vol. 316(2), pages 667-679.
    12. Zheng, Xiao-Xue & Liu, Zhi & Li, Kevin W. & Huang, Jun & Chen, Ji, 2019. "Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns," International Journal of Production Economics, Elsevier, vol. 212(C), pages 92-110.
    13. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Satoshi Masuya & Masahiro Inuiguchi, 2016. "A fundamental study for partially defined cooperative games," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 281-306, September.
    15. Guang Zhang & Erfang Shan & Liying Kang & Yanxia Dong, 2017. "Two efficient values of cooperative games with graph structure based on $$\tau $$ τ -values," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 462-482, August.
    16. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.
    17. Sylvain Béal & Marc Deschamps & Philippe Solal, 2014. "Balanced collective contributions, the equal allocation of non-separable costs and application to data sharing games," Working Papers hal-01377926, HAL.
    18. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    19. J. Keith Murnighan & Alvin E. Roth, 1978. "Large Group Bargaining in a Characteristic Function Game," Journal of Conflict Resolution, Peace Science Society (International), vol. 22(2), pages 299-317, June.
    20. Brânzei, R. & Fragnelli, V. & Meca, A. & Tijs, S.H., 2006. "Two Classes of Cooperative Games Related to One-Object Auction Situations," Discussion Paper 2006-25, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:96:y:2024:i:2:d:10.1007_s11238-023-09946-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.