IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2001-02.html
   My bibliography  Save this paper

Statistical analysis of the inhomogeneous telegrapher's process

Author

Listed:
  • Stefano Iacus

Abstract

We consider a problem of estimation for the telegrapher's process on the line, say X(t), driven by a Poisson process with non constant rate. It turns out that the finite-dimensional law of the process X(t)is a solution to the telegraph equation with non constant coefficients. We give the explicit law (P) of the process X(t) for a parametric class of intensity functions for the Poisson process. We propose anestimator for the parameter of P and we discuss its properties as a first attempt to apply statistics to these models.

Suggested Citation

  • Stefano Iacus, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Departmental Working Papers 2001-02, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2001-02
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2001/DEMM-2001_002wp.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Gregorio, Alessandro & Macci, Claudio, 2012. "Large deviation principles for telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1874-1882.
    2. Alessandro Gregorio & Stefano Iacus, 2008. "Parametric estimation for the standard and geometric telegraph process observed at discrete times," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 249-263, October.
    3. De Gregorio, Alessandro, 2009. "Parametric estimation for planar random flights," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2193-2199, October.
    4. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    5. Nicole Bauerle & Igor Gilitschenski & Uwe D. Hanebeck, 2014. "Exact and Approximate Hidden Markov Chain Filters Based on Discrete Observations," Papers 1411.0849, arXiv.org, revised Dec 2014.

    More about this item

    Keywords

    telegraph equation; inhomogeneous Poisson process; minimax;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2001-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.