IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v332y2004icp141-150.html
   My bibliography  Save this article

Supersymmetry in random two-velocity processes

Author

Listed:
  • Filliger, Roger
  • Hongler, Max-Olivier

Abstract

We discuss a random two-velocity process on the line with space-dependent exogenous drift. For this process, the probability density and the associated “probability current” are shown to be in a supersymmetric relation.

Suggested Citation

  • Filliger, Roger & Hongler, Max-Olivier, 2004. "Supersymmetry in random two-velocity processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 141-150.
  • Handle: RePEc:eee:phsmap:v:332:y:2004:i:c:p:141-150
    DOI: 10.1016/j.physa.2003.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103009130
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiss, George H, 2002. "Some applications of persistent random walks and the telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 381-410.
    2. Masoliver, Jaume & Weiss, George H., 1992. "First passage times for a generalized telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 183(4), pages 537-548.
    3. Orsingher, Enzo, 1985. "Hyperbolic equations arising in random models," Stochastic Processes and their Applications, Elsevier, vol. 21(1), pages 93-106, December.
    4. Hongler, M.-O., 1986. "Supersymmetry and signal propagation in inhomogeneous transmission lines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 137(1), pages 407-416.
    5. Hongler, M.-O. & Streit, L., 1990. "Generalized master equations and the telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 165(2), pages 196-206.
    6. Sibani, P. & van Kampen, N.G., 1983. "An exactly soluble relaxation problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 122(3), pages 397-412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2022. "Kac-Ornstein-Uhlenbeck Processes: Stationary Distributions and Exponential Functionals," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2703-2721, December.
    2. Jonathan R. Potts, 2019. "Directionally Correlated Movement Can Drive Qualitative Changes in Emergent Population Distribution Patterns," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    3. Cvetićanin, Stevan M. & Zorica, Dušan & Rapaić, Milan R., 2021. "Non-local telegrapher’s equation as a transmission line model," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. Nikita Ratanov & Mikhail Turov, 2023. "On Local Time for Telegraph Processes," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    5. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    6. Kolesnik, Alexander D., 2018. "Slow diffusion by Markov random flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 186-197.
    7. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    8. Hongler, M.-O. & Streit, L., 1990. "Generalized master equations and the telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 165(2), pages 196-206.
    9. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    10. Peggy Cénac & Arnaud Ny & Basile Loynes & Yoann Offret, 2018. "Persistent Random Walks. I. Recurrence Versus Transience," Journal of Theoretical Probability, Springer, vol. 31(1), pages 232-243, March.
    11. Anatoliy A. Pogorui & Anatoliy Swishchuk & Ramón M. Rodríguez-Dagnino, 2021. "Transformations of Telegraph Processes and Their Financial Applications," Risks, MDPI, vol. 9(8), pages 1-21, August.
    12. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    13. Nikita Ratanov, 2004. "Branching random motions, nonlinear hyperbolic systems and traveling waves," Borradores de Investigación 4331, Universidad del Rosario.
    14. García-Pelayo, Ricardo, 2007. "Solution of the persistent, biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 143-149.
    15. Vallois, Pierre & Tapiero, Charles S., 2009. "A claims persistence process and insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 367-373, June.
    16. García-Pelayo, Ricardo, 2023. "New techniques to solve the 1-dimensional random flight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    17. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    18. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    19. Devi, Vinita & Maurya, Rahul Kumar & Singh, Somveer & Singh, Vineet Kumar, 2020. "Lagrange’s operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    20. Maes, Christian & Meerts, Kasper & Struyve, Ward, 2022. "Diffraction and interference with run-and-tumble particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:332:y:2004:i:c:p:141-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.