IDEAS home Printed from https://ideas.repec.org/p/bep/unimip/unimi-1033.html
   My bibliography  Save this paper

Parametric estimation for the standard and the geometric telegraph process observed at discrete times

Author

Listed:
  • Stefano Iacus

    (Department of Economics, Business and Statistics, University of Milan, IT)

  • Alessandro De Gregorio

    (Department of Statistics, University of Padova)

Abstract

The telegraph process $X(t)$, $t>0$, (Goldstein, 1951) and the geometric telegraph process $S(t) = s_0 \exp\{(\mu -\frac12\sigma^2)t + \sigma X(t)\}$ with $\mu$ a known constant and $\sigma>0$ a parameter are supposed to be observed at $n+1$ equidistant time points $t_i=i\Delta_n,i=0,1,\ldots, n$. For both models $\lambda$, the underlying rate of the Poisson process, is a parameter to be estimated. In the geometric case, also $\sigma>0$ has to be estimated. We propose different estimators of the parameters and we investigate their performance under the high frequency asymptotics, i.e. $\Delta_n \to 0$, $n\Delta = T 0$ fixed. The process $X(t)$ in non markovian, non stationary and not ergodic thus we use approximation arguments to derive estimators. Given the complexity of the equations involved only estimators on the first model can be studied analytically. Therefore, we run an extensive Monte Carlo analysis to study the performance of the proposed estimators also for small sample size $n$.

Suggested Citation

  • Stefano Iacus & Alessandro De Gregorio, 2006. "Parametric estimation for the standard and the geometric telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1033, Universitá degli Studi di Milano.
  • Handle: RePEc:bep:unimip:unimi-1033
    Note: oai:cdlib1:unimi-1033
    as

    Download full text from publisher

    File URL: http://services.bepress.com/unimi/statistics/art14
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nikita Ratanov, 2007. "A jump telegraph model for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 575-583.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Stefano Iacus & Nakahiro Yoshida, 2006. "Estimation for the discretely observed telegraph process," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1045, Universitá degli Studi di Milano.
    4. Mathieu Kessler, 2000. "Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 65-82, March.
    5. Stefano Iacus, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Departmental Working Papers 2001-02, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    6. Nikita Ratanov, 2005. "Quantil Hedging for telegraph markets and its applications to a pricing of equity-linked life insurance contracts," Borradores de Investigación 3410, Universidad del Rosario.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Pozdnyakov & L. M. Elbroch & C. Hu & T. Meyer & J. Yan, 2020. "On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1275-1291, September.
    2. Thomas M. Michelitsch & Federico Polito & Alejandro P. Riascos, 2023. "Semi-Markovian Discrete-Time Telegraph Process with Generalized Sibuya Waiting Times," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    3. De Gregorio, Alessandro, 2009. "Parametric estimation for planar random flights," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2193-2199, October.
    4. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    2. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    3. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    4. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    5. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    6. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    7. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    8. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    9. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    10. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    11. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    12. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    13. José Martins & Rui Cunha Marques & Carlos Oliveira Cruz & Álvaro Fonseca, 2017. "Flexibility in planning and development of a container terminal: an application of an American-style call option," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 828-840, October.
    14. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    15. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Jochen Bigus, 2002. "Investitionsanreize, Koalitionsverhalten und Gläubigerkonflikte," Schmalenbach Journal of Business Research, Springer, vol. 54(4), pages 317-342, June.
    17. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    18. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    19. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    20. George W. Kutner & James A. Seifert, 1989. "The Valuation of Mortgage Loan Commitments Using Option Pricing Estimates," Journal of Real Estate Research, American Real Estate Society, vol. 4(2), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:unimip:unimi-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.