IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i1d10.1007_s10959-024-01378-6.html
   My bibliography  Save this article

Planar Random Motions in a Vortex

Author

Listed:
  • Enzo Orsingher

    (Sapienza Università di Roma)

  • Manfred Marvin Marchione

    (Sapienza Università di Roma)

Abstract

We study a planar random motion $$\big (X(t),Y(t)\big )$$ ( X ( t ) , Y ( t ) ) with orthogonal directions which can turn clockwise, turn counterclockwise, and reverse its direction, each with a different probability. The support of the process is given by a time-varying square and the singular distributions on the boundary and the diagonals of the square are obtained explicitly. In the interior of the support, we study the hydrodynamic limit of the distribution. We then investigate the time T(t) spent by the process moving vertically and the joint distribution of $$\big (T(t),Y(t)\big )$$ ( T ( t ) , Y ( t ) ) . We prove that, in the hydrodynamic limit, the process $$\big (X(t),Y(t)\big )$$ ( X ( t ) , Y ( t ) ) spends half the time moving vertically.

Suggested Citation

  • Enzo Orsingher & Manfred Marvin Marchione, 2025. "Planar Random Motions in a Vortex," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-42, March.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:1:d:10.1007_s10959-024-01378-6
    DOI: 10.1007/s10959-024-01378-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01378-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01378-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Orsingher & A. Gregorio, 2007. "Random Flights in Higher Spaces," Journal of Theoretical Probability, Springer, vol. 20(4), pages 769-806, December.
    2. Weiss, George H, 2002. "Some applications of persistent random walks and the telegrapher's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 381-410.
    3. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    4. Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    2. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    3. Cinque, Fabrizio & Orsingher, Enzo, 2023. "Random motions in R3 with orthogonal directions," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 173-200.
    4. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    5. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    6. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    7. Nikita Ratanov, 2004. "Branching random motions, nonlinear hyperbolic systems and traveling waves," Borradores de Investigación 4331, Universidad del Rosario.
    8. Jonathan R. Potts, 2019. "Directionally Correlated Movement Can Drive Qualitative Changes in Emergent Population Distribution Patterns," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    9. Jiang Hui & Xu Lihu & Yang Qingshan, 2024. "Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3015-3054, November.
    10. Cvetićanin, Stevan M. & Zorica, Dušan & Rapaić, Milan R., 2021. "Non-local telegrapher’s equation as a transmission line model," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    11. García-Pelayo, Ricardo, 2007. "Solution of the persistent, biased random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 143-149.
    12. Nikita Ratanov & Mikhail Turov, 2023. "On Local Time for Telegraph Processes," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    13. Vallois, Pierre & Tapiero, Charles S., 2009. "A claims persistence process and insurance," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 367-373, June.
    14. García-Pelayo, Ricardo, 2023. "New techniques to solve the 1-dimensional random flight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    15. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    16. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    17. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    18. Kolesnik, Alexander D., 2018. "Slow diffusion by Markov random flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 186-197.
    19. Vallois, Pierre & Tapiero, Charles S., 2007. "Memory-based persistence in a counting random walk process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 303-317.
    20. Maes, Christian & Meerts, Kasper & Struyve, Ward, 2022. "Diffraction and interference with run-and-tumble particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:1:d:10.1007_s10959-024-01378-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.