IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i3d10.1007_s11009-013-9392-1.html
   My bibliography  Save this article

Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process

Author

Listed:
  • Antonio Di Crescenzo

    (Università di Salerno)

  • Shelemyahu Zacks

    (Binghamton University)

Abstract

We consider a standard Brownian motion whose drift alternates randomly between a positive and a negative value, according to a generalized telegraph process. We first investigate the distribution of the occupation time, i.e. the fraction of time when the motion moves with positive drift. This allows to obtain explicitly the probability law and the flow function of the random motion. We discuss three special cases when the times separating consecutive drift changes have (i) exponential distribution with constant rates, (ii) Erlang distribution, and (iii) exponential distribution with linear rates. In conclusion, in view of an application in environmental sciences we evaluate the density of a Wiener process with infinitesimal moments alternating at inverse Gaussian distributed random times.

Suggested Citation

  • Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9392-1
    DOI: 10.1007/s11009-013-9392-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9392-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9392-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Savas Dayanik, 2010. "Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 756-785, November.
    2. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    3. Nikita Ratanov, 2007. "A jump telegraph model for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 575-583.
    4. Orsingher, Enzo, 1985. "Hyperbolic equations arising in random models," Stochastic Processes and their Applications, Elsevier, vol. 21(1), pages 93-106, December.
    5. X. Guo, 2001. "Information and option pricings," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 38-44.
    6. Orsingher, Enzo, 1986. "Brownian fluctuations in space-time with applications to vibrations of rods," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 221-234, December.
    7. Nikita Ratanov, 2008. "Option Pricing Model Based on a Markov-modulated Diffusion with Jumps," Papers 0812.0761, arXiv.org.
    8. Orsingher, Enzo, 1990. "Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws," Stochastic Processes and their Applications, Elsevier, vol. 34(1), pages 49-66, February.
    9. A. Crescenzo & E. Nardo & L. M. Ricciardi, 2005. "Simulation of First-Passage Times for Alternating Brownian Motions," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 161-181, June.
    10. L. Beghin & L. Nieddu & E. Orsingher, 2001. "Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations," International Journal of Stochastic Analysis, Hindawi, vol. 14, pages 1-15, January.
    11. Esser, Angelika & Monch, Burkart, 2007. "The navigation of an iceberg: The optimal use of hidden orders," Finance Research Letters, Elsevier, vol. 4(2), pages 68-81, June.
    12. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Pozdnyakov & L. M. Elbroch & C. Hu & T. Meyer & J. Yan, 2020. "On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1275-1291, September.
    2. Ratanov, Nikita, 2015. "Hypo-exponential distributions and compound Poisson processes with alternating parameters," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 71-78.
    3. Vladimir Pozdnyakov & L. Mark Elbroch & Anthony Labarga & Thomas Meyer & Jun Yan, 2019. "Discretely Observed Brownian Motion Governed by Telegraph Process: Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 907-920, September.
    4. Iuliano, Antonella & Macci, Claudio, 2023. "Asymptotic results for the absorption time of telegraph processes with a non-standard barrier at the origin," Statistics & Probability Letters, Elsevier, vol. 196(C).
    5. Macci, Claudio, 2016. "Large deviations for some non-standard telegraph processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 119-127.
    6. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    7. Claudio Macci & Barbara Martinucci & Enrica Pirozzi, 2021. "Asymptotic Results for the Absorption Time of Telegraph Processes with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1077-1096, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.
    2. Nikita Ratanov, 2016. "Option Pricing Under Jump-Diffusion Processes with Regime Switching," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 829-845, September.
    3. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    4. Anatoliy A. Pogorui & Anatoliy Swishchuk & Ramón M. Rodríguez-Dagnino, 2021. "Transformations of Telegraph Processes and Their Financial Applications," Risks, MDPI, vol. 9(8), pages 1-21, August.
    5. De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
    6. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    7. Vladimir Pozdnyakov & L. Mark Elbroch & Anthony Labarga & Thomas Meyer & Jun Yan, 2019. "Discretely Observed Brownian Motion Governed by Telegraph Process: Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 907-920, September.
    8. Cinque, Fabrizio & Orsingher, Enzo, 2021. "On the exact distributions of the maximum of the asymmetric telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 601-633.
    9. Asaf Cohen, 2015. "Parameter Estimation: The Proper Way to Use Bayesian Posterior Processes with Brownian Noise," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 361-389, February.
    10. Savas Dayanik & Semih O. Sezer, 2016. "Sequential Sensor Installation for Wiener Disorder Detection," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 827-850, August.
    11. Ratanov, Nikita, 2015. "Hypo-exponential distributions and compound Poisson processes with alternating parameters," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 71-78.
    12. Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
    13. De Gregorio, Alessandro & Macci, Claudio, 2012. "Large deviation principles for telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1874-1882.
    14. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    15. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    16. Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
    17. Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
    18. Nikita Ratanov, 2015. "Telegraph Processes with Random Jumps and Complete Market Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 677-695, September.
    19. Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
    20. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-013-9392-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.