IDEAS home Printed from https://ideas.repec.org/p/man/cgbcrp/175.html
   My bibliography  Save this paper

On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine

Author

Listed:
  • Michele Berardi
  • Jaqueson K. Galimberti

Abstract

We provide a critical review on the methods previously adopted into the literature of learning and expectations in macroeconomics in order to initialize its underlying learning algorithms either for simulation or empirical purposes. We find that none of these methods is able to pass the sieve of both criteria of coherence to the algorithm long run behavior and of feasibility within the data availability restrictions for macroeconomics. We then propose a smoothing-based initialization routine, and show through simulations that our method meets both those criteria in exchange for a higher computational cost. A simple empirical application is also presented to demonstrate the relevance of initialization for beginning-of-sample inferences.

Suggested Citation

  • Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
  • Handle: RePEc:man:cgbcrp:175
    as

    Download full text from publisher

    File URL: http://hummedia.manchester.ac.uk/schools/soss/cgbcr/discussionpapers/dpcgbcr175.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Athanasios Orphanides & John C. Williams, 2005. "Inflation scares and forecast-based monetary policy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 498-527, April.
    2. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    3. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    4. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    5. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
    6. Pfajfar, Damjan & Santoro, Emiliano, 2010. "Heterogeneity, learning and information stickiness in inflation expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 426-444, September.
    7. James Bullard & Stefano Eusepi, 2005. "Did the Great Inflation Occur Despite Policymaker Commitment to a Taylor Rule?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 324-359, April.
    8. KevinX.D. Huang & Zheng Liu & Tao Zha, 2009. "Learning, Adaptive Expectations and Technology Shocks," Economic Journal, Royal Economic Society, vol. 119(536), pages 377-405, March.
    9. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
    10. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
    11. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    12. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    13. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    14. George W. Evans & Seppo Honkapohja & Noah Williams, 2010. "Generalized Stochastic Gradient Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(1), pages 237-262, February.
    15. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    16. Milani, Fabio, 2008. "Learning, monetary policy rules, and macroeconomic stability," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3148-3165, October.
    17. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    18. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
    19. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    20. Branch, William A. & Evans, George W., 2006. "A simple recursive forecasting model," Economics Letters, Elsevier, vol. 91(2), pages 158-166, May.
    21. George W. Evans & Seppo Honkapohja, 2009. "Learning and Macroeconomics," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 421-451, May.
    22. Barucci, Emilio & Landi, Leonardo, 1997. "Least mean squares learning in self-referential linear stochastic models," Economics Letters, Elsevier, vol. 57(3), pages 313-317, December.
    23. Bray, Margaret M & Savin, Nathan E, 1986. "Rational Expectations Equilibria, Learning, and Model Specification," Econometrica, Econometric Society, vol. 54(5), pages 1129-1160, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Strobach & Carin van der Cruijsen, 2015. "The formation of European inflation expectations: One learning rule does not fit all," DNB Working Papers 472, Netherlands Central Bank, Research Department.
    2. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2014. "A note on the representative adaptive learning algorithm," Economics Letters, Elsevier, vol. 124(1), pages 104-107.
    4. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    5. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    2. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    4. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    5. Koursaros, Demetris, 2019. "Learning expectations using multi-period forecasts," Journal of Economics and Business, Elsevier, vol. 102(C), pages 1-25.
    6. Duffy, John & Shin, Michael, 2024. "Heterogeneous experience and constant-gain learning," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    7. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    8. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    9. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    10. Mitra, Kaushik & Evans, George W. & Honkapohja, Seppo, 2013. "Policy change and learning in the RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1947-1971.
    11. Agnieszka Markiewicz, 2012. "Model Uncertainty And Exchange Rate Volatility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 815-844, August.
    12. Mitra, Kaushik & Evans, George W. & Honkapohja, Seppo, 2013. "Policy change and learning in the RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1947-1971.
    13. Jaqueson K. Galimberti, 2020. "Information weighting under least squares learning," CAMA Working Papers 2020-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. George W. Evans & Seppo Honkapohja & Kaushik Mitra, 2022. "Expectations, Stagnation, And Fiscal Policy: A Nonlinear Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1397-1425, August.
    15. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
    16. Marine Charlotte André & Meixing Dai, 2018. "The limits to robust monetary policy in a small open economy with learning agents," Working Papers of BETA 2018-45, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    17. Evans, David & Evans, George W. & McGough, Bruce, 2022. "The RPEs of RBCs and other DSGEs," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    18. Schaefer, Daniel & Singleton, Carl, 2018. "Unemployment and econometric learning," Research in Economics, Elsevier, vol. 72(2), pages 277-296.
    19. Patrick Pintus & Jacek Suda, 2019. "Learning Financial Shocks and the Great Recession," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 123-146, January.
    20. F. Di Pace & K. Mitra & S. Zhang, 2021. "Adaptive Learning and Labor Market Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(2-3), pages 441-475, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:man:cgbcrp:175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marianne Sensier (email available below). General contact details of provider: https://edirc.repec.org/data/semanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.