IDEAS home Printed from https://ideas.repec.org/p/aut/wpaper/202101.html
   My bibliography  Save this paper

Initial Beliefs Uncertainty and Information Weighting in the Estimation of Models with Adaptive Learning

Author

Listed:
  • Jaqueson Galimberti

    (School of Economics, Faculty of Business, Economics and Law at AUT University)

Abstract

This paper evaluates how the way agents weight information when forming expectations can affect the econometric estimation of models with adaptive learning. One key new finding is that misspecification of the uncertainty about initial beliefs under constantgain least squares learning can generate a time-varying profile of weights given to past observations, distorting the estimation and behavioural interpretation of this mechanism in small samples of data. This result is derived under a new representation of the learning algorithm that penalizes the effects of misspecification of the learning initials. Simulations of a forward-looking Phillips curve model with learning indicate that (i) misspecification of initials uncertainty can lead to substantial biases to estimates of expectations relevance for inflation, and (ii) that these biases can spill over to estimates of inflation rates responsiveness to output gaps. An empirical application with U.S. data shows the relevance of these effects.

Suggested Citation

  • Jaqueson Galimberti, 2021. "Initial Beliefs Uncertainty and Information Weighting in the Estimation of Models with Adaptive Learning," Working Papers 2021-01, Auckland University of Technology, Department of Economics.
  • Handle: RePEc:aut:wpaper:202101
    as

    Download full text from publisher

    File URL: https://www.aut.ac.nz/__data/assets/pdf_file/0003/490431/Working-paper-21_01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    2. George W. Evans & Seppo Honkapohja, 1993. "Adaptive forecasts, hysteresis, and endogenous fluctuations," Economic Review, Federal Reserve Bank of San Francisco, pages 3-13.
    3. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
    4. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
    5. Robert J. Gordon, 2011. "The History of the Phillips Curve: Consensus and Bifurcation," Economica, London School of Economics and Political Science, vol. 78(309), pages 10-50, January.
    6. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    7. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    8. Giorgio E. Primiceri, 2006. "Why Inflation Rose and Fell: Policy-Makers' Beliefs and U. S. Postwar Stabilization Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 867-901.
    9. George W. Evans & Seppo Honkapohja & Noah Williams, 2010. "Generalized Stochastic Gradient Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(1), pages 237-262, February.
    10. Berardi, Michele & Galimberti, Jaqueson K., 2014. "A note on the representative adaptive learning algorithm," Economics Letters, Elsevier, vol. 124(1), pages 104-107.
    11. Lubik, Thomas A. & Matthes, Christian, 2016. "Indeterminacy and learning: An analysis of monetary policy in the Great Inflation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 85-106.
    12. Galimberti, Jaqueson K., 2019. "An approximation of the distribution of learning estimates in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 102(C), pages 29-43.
    13. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    14. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    15. Ulrike Malmendier & Stefan Nagel, 2016. "Learning from Inflation Experiences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(1), pages 53-87.
    16. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    17. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
    18. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
    19. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    20. Kostyshyna, Olena, 2012. "Application Of An Adaptive Step-Size Algorithm In Models Of Hyperinflation," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S3), pages 355-375, November.
    21. Noah Williams, 2019. "Escape Dynamics in Learning Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 882-912.
    22. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    23. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    24. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    2. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    3. Galimberti, Jaqueson K., 2019. "An approximation of the distribution of learning estimates in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 102(C), pages 29-43.
    4. Michele Berardi, 2020. "A probabilistic interpretation of the constant gain learning algorithm," Bulletin of Economic Research, Wiley Blackwell, vol. 72(4), pages 393-403, October.
    5. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    6. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    7. Kobielarz, Michal, 2018. "The economics of monetary unions," Other publications TiSEM b0293536-68ec-4905-bffd-6, Tilburg University, School of Economics and Management.
    8. Carlos Carvalho & Stefano Eusepi & Emanuel Moench & Bruce Preston, 2023. "Anchored Inflation Expectations," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(1), pages 1-47, January.
    9. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    10. Gáti, Laura, 2023. "Monetary policy & anchored expectations—An endogenous gain learning model," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 37-47.
    11. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    12. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    13. KevinX.D. Huang & Zheng Liu & Tao Zha, 2009. "Learning, Adaptive Expectations and Technology Shocks," Economic Journal, Royal Economic Society, vol. 119(536), pages 377-405, March.
    14. Dave, Chetan & Malik, Samreen, 2017. "A tale of fat tails," European Economic Review, Elsevier, vol. 100(C), pages 293-317.
    15. Christina Strobach & Carin van der Cruijsen, 2015. "The formation of European inflation expectations: One learning rule does not fit all," DNB Working Papers 472, Netherlands Central Bank, Research Department.
    16. Norman, Thomas W.L., 2015. "Learning, hypothesis testing, and rational-expectations equilibrium," Games and Economic Behavior, Elsevier, vol. 90(C), pages 93-105.
    17. Best, Gabriela & Hur, Joonyoung, 2019. "Bad luck, bad policy, and learning? A Markov-switching approach to understanding postwar U.S. macroeconomic dynamics," European Economic Review, Elsevier, vol. 119(C), pages 55-78.
    18. Marine Charlotte André & Meixing Dai, 2015. "Central bank accountability under adaptive learning," Working Papers of BETA 2015-32, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    19. Arturo Ormeño & Krisztina Molnár, 2015. "Using Survey Data of Inflation Expectations in the Estimation of Learning and Rational Expectations Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 673-699, June.
    20. Alexander Mayer, 2022. "Estimation and inference in adaptive learning models with slowly decreasing gains," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 720-749, September.

    More about this item

    Keywords

    expectations; adaptive learning; bounded rationality; macroeconomics;
    All these keywords.

    JEL classification:

    • E70 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aut:wpaper:202101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gail Pacheco (email available below). General contact details of provider: https://edirc.repec.org/data/fbautnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.