IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v78y2017icp26-53.html
   My bibliography  Save this article

On the initialization of adaptive learning in macroeconomic models

Author

Listed:
  • Berardi, Michele
  • Galimberti, Jaqueson K.

Abstract

We review and evaluate methods previously adopted in the applied literature of adaptive learning in order to initialize agents’ beliefs. Previous methods are classified into three broad classes: equilibrium-related, training sample-based, and estimation-based. We conduct several simulations comparing the accuracy of the initial estimates provided by these methods and how they affect the accuracy of other estimated model parameters. We find evidence against their joint estimation with standard moment conditions: as the accuracy of estimated initials tends to deteriorate with the sample size, spillover effects also deteriorate the accuracy of the estimates of the model’s structural parameters. We show how this problem can be attenuated by penalizing the variance of estimation errors. Even so, the joint estimation of learning initials with other model parameters is still subject to severe distortions in small samples. We find that equilibrium-related and training sample-based initials are less prone to these issues. We also demonstrate the empirical relevance of our results by estimating a New Keynesian Phillips curve with learning, where we find that our estimation approach provides robustness to the initialization of learning. That allows us to conclude that under adaptive learning the degree of price stickiness is lower compared to inferences under rational expectations.

Suggested Citation

  • Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
  • Handle: RePEc:eee:dyncon:v:78:y:2017:i:c:p:26-53
    DOI: 10.1016/j.jedc.2017.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188917300465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2017.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
    2. Athanasios Orphanides & John C. Williams, 2005. "Inflation scares and forecast-based monetary policy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 498-527, April.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.
    4. Giorgio E. Primiceri, 2006. "Why Inflation Rose and Fell: Policy-Makers' Beliefs and U. S. Postwar Stabilization Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 867-901.
    5. Lubik, Thomas A. & Matthes, Christian, 2016. "Indeterminacy and learning: An analysis of monetary policy in the Great Inflation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 85-106.
    6. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.
    7. Stefano Eusepi & Bruce Preston, 2011. "Expectations, Learning, and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 101(6), pages 2844-2872, October.
    8. Orphanides, Athanasios & Williams, John C., 2005. "The decline of activist stabilization policy: Natural rate misperceptions, learning, and expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1927-1950, November.
    9. Pfajfar, Damjan & Santoro, Emiliano, 2010. "Heterogeneity, learning and information stickiness in inflation expectations," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 426-444, September.
    10. James Bullard & Stefano Eusepi, 2005. "Did the Great Inflation Occur Despite Policymaker Commitment to a Taylor Rule?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 324-359, April.
    11. KevinX.D. Huang & Zheng Liu & Tao Zha, 2009. "Learning, Adaptive Expectations and Technology Shocks," Economic Journal, Royal Economic Society, vol. 119(536), pages 377-405, March.
    12. Fuhrer, Jeffrey C. & Moore, George R. & Schuh, Scott D., 1995. "Estimating the linear-quadratic inventory model Maximum likelihood versus generalized method of moments," Journal of Monetary Economics, Elsevier, vol. 35(1), pages 115-157, February.
    13. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
    14. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
    15. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    16. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    17. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    18. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
    19. Berardi, Michele & Galimberti, Jaqueson K., 2014. "A note on the representative adaptive learning algorithm," Economics Letters, Elsevier, vol. 124(1), pages 104-107.
    20. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    21. Thomas Sargent & Noah Williams & Tao Zha, 2006. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
    22. George W. Evans & Seppo Honkapohja, 2009. "Robust Learning Stability with Operational Monetary Policy Rules," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 5, pages 145-170, Central Bank of Chile.
    23. Milani, Fabio, 2008. "Learning, monetary policy rules, and macroeconomic stability," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3148-3165, October.
    24. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.
    25. Sergey Slobodyan & Raf Wouters, 2012. "Learning in a Medium-Scale DSGE Model with Expectations Based on Small Forecasting Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(2), pages 65-101, April.
    26. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    27. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    28. Eva Carceles-Poveda & Chryssi Giannitsarou, 2008. "Asset Pricing with Adaptive Learning," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 629-651, July.
    29. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    30. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    31. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    32. Carboni, Giacomo & Ellison, Martin, 2009. "The Great Inflation and the Greenbook," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 831-841, September.
    33. Eric Gaus & Srikanth Ramamurthy, 2012. "Estimation of Constant Gain Learning Models," Working Papers 12-01, Ursinus College, Department of Economics, revised 01 Apr 2014.
    34. Barucci, Emilio & Landi, Leonardo, 1997. "Least mean squares learning in self-referential linear stochastic models," Economics Letters, Elsevier, vol. 57(3), pages 313-317, December.
    35. Bray, Margaret M & Savin, Nathan E, 1986. "Rational Expectations Equilibria, Learning, and Model Specification," Econometrica, Econometric Society, vol. 54(5), pages 1129-1160, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    2. Jaqueson K. Galimberti, 2020. "Information weighting under least squares learning," CAMA Working Papers 2020-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    4. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    5. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    6. Berardi, Michele & Galimberti, Jaqueson K., 2017. "On the initialization of adaptive learning in macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 26-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    2. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    3. Jaqueson K. Galimberti, 2020. "Information weighting under least squares learning," CAMA Working Papers 2020-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    5. Berardi, Michele & Galimberti, Jaqueson K., 2019. "Smoothing-Based Initialization For Learning-To-Forecast Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1008-1023, April.
    6. Koursaros, Demetris, 2019. "Learning expectations using multi-period forecasts," Journal of Economics and Business, Elsevier, vol. 102(C), pages 1-25.
    7. George W. Evans & Seppo Honkapohja, 2009. "Expectations, Learning and Monetary Policy: An Overview of Recent Research," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 2, pages 027-076, Central Bank of Chile.
    8. George W. Evans & Seppo Honkapohja, 2009. "Expectations, Learning and Monetary Policy: An Overview of Recent Research," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 2, pages 027-076, Central Bank of Chile.
    9. Agnieszka Markiewicz, 2012. "Model Uncertainty And Exchange Rate Volatility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 815-844, August.
    10. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    11. F. Di Pace & K. Mitra & S. Zhang, 2021. "Adaptive Learning and Labor Market Dynamics," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(2-3), pages 441-475, March.
    12. Best, Gabriela, 2017. "Policy Preferences And Policy Makers' Beliefs: The Great Inflation," Macroeconomic Dynamics, Cambridge University Press, vol. 21(8), pages 1957-1995, December.
    13. Kobielarz, Michal, 2018. "The economics of monetary unions," Other publications TiSEM b0293536-68ec-4905-bffd-6, Tilburg University, School of Economics and Management.
    14. Gáti, Laura, 2023. "Monetary policy & anchored expectations—An endogenous gain learning model," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 37-47.
    15. Slobodyan, Sergey & Wouters, Raf, 2012. "Learning in an estimated medium-scale DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 26-46.
    16. Duffy, John & Shin, Michael, 2024. "Heterogeneous experience and constant-gain learning," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    17. Mitra, Kaushik & Evans, George W. & Honkapohja, Seppo, 2013. "Policy change and learning in the RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1947-1971.
    18. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    19. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    20. Arturo Ormeño & Krisztina Molnár, 2015. "Using Survey Data of Inflation Expectations in the Estimation of Learning and Rational Expectations Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 673-699, June.

    More about this item

    Keywords

    Expectations; Adaptive learning; Initialization; Algorithms; Hybrid New Keynesian Phillips curve;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E03 - Macroeconomics and Monetary Economics - - General - - - Behavioral Macroeconomics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:78:y:2017:i:c:p:26-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.