IDEAS home Printed from https://ideas.repec.org/a/anr/reveco/v1y2009p421-451.html
   My bibliography  Save this article

Learning and Macroeconomics

Author

Listed:
  • George W. Evans
  • Seppo Honkapohja

    (Department of Economics, University of Oregon, Eugene, Oregon 97403-1285, and School of Economics and Finance, University of St. Andrews, KY16 9AL Scotland
    Bank of Finland, PO Box 160, FI00101 Helsinki, Finland)

Abstract

Expectations play a central role in modern macroeconomic theories. The econometric learning approach models economic agents as forming expectations by estimating and updating forecasting models in real time. The learning approach provides a stability test for rational expectations and a selection criterion in models with multiple equilibria. In addition, learning provides new dynamics if older data are discounted, if models are misspecified, or if agents choose between competing models. This paper describes the expectational stability (E-stability) principle and the stochastic approximation tools used to assess equilibria under learning. Applications of learning to a number of areas are reviewed, including the design of monetary and fiscal policy, business cycles, self-fulfilling prophecies, hyperinflation, liquidity traps, and asset prices.

Suggested Citation

  • George W. Evans & Seppo Honkapohja, 2009. "Learning and Macroeconomics," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 421-451, May.
  • Handle: RePEc:anr:reveco:v:1:y:2009:p:421-451
    as

    Download full text from publisher

    File URL: http://www.annualreviews.org/doi/abs/10.1146/annurev.economics.050708.142927
    Download Restriction: Full text downloads are only available to subscribers. Visit the abstract page for more information.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Keywords

    E-stability; stochastic approximation; persistent learning dynamics; business cycles; monetary policy; asset prices;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anr:reveco:v:1:y:2009:p:421-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: http://www.annualreviews.org (email available below). General contact details of provider: http://www.annualreviews.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.