IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/9814.html
   My bibliography  Save this paper

Figure Skating and the Theory of Social Choice

Author

Listed:
  • Truchon, Michel

Abstract

The rule used by the United States Figure Skating Association and the International Skating Union, hereafter the ISU Rule, to aggregate individual rankings of the skaters by the judges into a final ranking, is an interesting example of a social welfare function. This rule is examined thoroughly in this paper from the perspective of the modern theory of social choice. The ISU Rule is based on four different criteria, the first being median ranks of the skaters. Although the median rank criterion is a majority principle, it is completely at odd with another majority principle introduced in this paper and called the Extended Condorcet Criterion. It may be translated as follows: If a competitor is ranked consistently ahead of another competitor by an absolute majority of judges, he should be ahead in the final ranking. Consistency here refers to the absence of a cycle in the majority relation involving these two skaters. There are actually many cycles in the data of four Olympic Games that were examined. The Kemeny rule may be used to break these cycles. This is not only consistent with the Extended Condorcet Criterion but the latter also proves useful in finding Kemeny orders over large sets of alternatives, by allowing decomposition of these orders. The ISU, the Kemeny, the Borda rankings and the ranking according to the raw marks are then compared on 24 olympic competitions. The four rankings disagree in many instances. Finally it is shown that the ISU Rule may be very sensitive to small errors on the part of the judges and that it does not escape the numerous theorems on manipulation. Some considerations are also offered as to whether the ISU Rule is more or less prone to manipulation than others. La règle utilisée par la United States Figure Skating Association et l'International Skating Union, ci-après la règle de l'ISU, pour agréger les classements des patineurs par chacun des juges en un classement final, est un exemple intéressant de fonction de bien-être social. Cette règle est examinée en détail dans cet article du point de vue de la théorie moderne des choix sociaux. Cette règle repose sur quatre critères, le premier étant le rang médian des patineurs. Bien que ce critère soit en fait un principe majoritaire, il va à l'encontre d'un autre principe majoritaire introduit ici et appelé le Critère de Condorcet généralisé. Il peut être traduit ainsi: Si un compétiteur est classé avant un autre de manière cohérente par une majorité de juges, il devrait l'être dans le classement final. La cohérence réfère à l'absence de cycle dans la relation majoritaire impliquant ces deux compétiteurs. De fait, plusieurs cycles ont été rencontrés dans les données de quatre Jeux olympiques qui ont été examinées. La règle de Kemeny peut être utilisée pour briser ces cycles. Non seulement cette règle est-elle cohérente avec le Critère de Condorcet généralisé mais ce dernier s'avère utile dans la recherche d'ordres de Kemeny sur un grand nombre d'alternatives, en permettant la décomposition de ces ordres. Les classements des patineurs selon les règles de l'ISU, de Kemeny, de Borda et selon les notes brutes sont ensuite comparés pour 24 compétitions olympiques. Les quatre classements sont souvent différents. Finalement, il est démontré que la règle de l'ISU peut être très sensible à de petites erreurs de la part des juges et qu'elle n'échappe pas aux nombreux théorèmes d'impossibilité sur la manipulation. Quelques remarques sont aussi offertes sur la plus ou moins grande susceptibilité de cette règle à la manipulation par rapport à d'autres règles.

Suggested Citation

  • Truchon, Michel, 1998. "Figure Skating and the Theory of Social Choice," Cahiers de recherche 9814, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:9814
    as

    Download full text from publisher

    File URL: http://www.ecn.ulaval.ca/w3/recherche/cahiers/1998/9814.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.
    2. Barthelemy, J. P. & Guenoche, A. & Hudry, O., 1989. "Median linear orders: Heuristics and a branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 42(3), pages 313-325, October.
    3. Muller, Eitan & Satterthwaite, Mark A., 1977. "The equivalence of strong positive association and strategy-proofness," Journal of Economic Theory, Elsevier, vol. 14(2), pages 412-418, April.
    4. Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.
    5. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
    6. Jonathan Levin & Barry Nalebuff, 1995. "An Introduction to Vote-Counting Schemes," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 3-26, Winter.
    7. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
    8. Saari, Donald G, 1990. "Susceptibility to Manipulation," Public Choice, Springer, vol. 64(1), pages 21-41, January.
    9. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
    10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.
    2. Boudreau, James & Ehrlich, Justin & Sanders, Shane & Winn, Adam, 2014. "Social choice violations in rank sum scoring: A formalization of conditions and corrective probability computations," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 20-29.
    3. William Gehrlein, 2002. "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences ," Theory and Decision, Springer, vol. 52(2), pages 171-199, March.
    4. Adrian Deemen, 2014. "On the empirical relevance of Condorcet’s paradox," Public Choice, Springer, vol. 158(3), pages 311-330, March.
    5. Mohamed Drissi-Bakhkhat & Michel Truchon, 2004. "Maximum likelihood approach to vote aggregation with variable probabilities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 161-185, October.
    6. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    7. Giuseppe Munda, 2012. "Intensity of preference and related uncertainty in non-compensatory aggregation rules," Theory and Decision, Springer, vol. 73(4), pages 649-669, October.
    8. James Boudreau & Justin Ehrlich & Mian Farrukh Raza & Shane Sanders, 2018. "The likelihood of social choice violations in rank sum scoring: algorithms and evidence from NCAA cross country running," Public Choice, Springer, vol. 174(3), pages 219-238, March.
    9. Azzini, Ivano & Munda, Giuseppe, 2020. "A new approach for identifying the Kemeny median ranking," European Journal of Operational Research, Elsevier, vol. 281(2), pages 388-401.
    10. Matthew Harrison-Trainor, 2020. "An Analysis of Random Elections with Large Numbers of Voters," Papers 2009.02979, arXiv.org.
    11. Giuseppe Munda & Michela Nardo, 2009. "Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1513-1523.
    12. Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truchon, Michel, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0402, Université Laval - Département d'économique.
    2. Truchon, Michel, 1999. "La démocratie : oui, mais laquelle?," L'Actualité Economique, Société Canadienne de Science Economique, vol. 75(1), pages 189-214, mars-juin.
    3. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.
    4. Michel Truchon, 2002. "Choix social et comités de sélection : le cas du patinage artistique," CIRANO Burgundy Reports 2002rb-02, CIRANO.
    5. Green-Armytage, James, 2011. "Strategic voting and nomination," MPRA Paper 32200, University Library of Munich, Germany.
    6. James Green-Armytage, 2014. "Strategic voting and nomination," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(1), pages 111-138, January.
    7. Felix Brandt, 2015. "Set-monotonicity implies Kelly-strategyproofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 793-804, December.
    8. Giuseppe Munda, 2012. "Choosing Aggregation Rules for Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 109(3), pages 337-354, December.
    9. Elizabeth Maggie Penn, 2015. "Arrow’s Theorem and its descendants," Chapters, in: Jac C. Heckelman & Nicholas R. Miller (ed.), Handbook of Social Choice and Voting, chapter 14, pages 237-262, Edward Elgar Publishing.
    10. Fujun Hou, 2024. "A new social welfare function with a number of desirable properties," Papers 2403.16373, arXiv.org.
    11. Bock, Hans-Hermann & Day, William H. E. & McMorris, F. R., 1998. "Consensus rules for committee elections," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 219-232, May.
    12. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    13. Dindar, Hayrullah & Lainé, Jean, 2017. "Manipulation of single-winner large elections by vote pairing," Economics Letters, Elsevier, vol. 161(C), pages 105-107.
    14. Brandt, Felix & Saile, Christian & Stricker, Christian, 2022. "Strategyproof social choice when preferences and outcomes may contain ties," Journal of Economic Theory, Elsevier, vol. 202(C).
    15. Takamiya, Koji, 2001. "Coalition strategy-proofness and monotonicity in Shapley-Scarf housing markets," Mathematical Social Sciences, Elsevier, vol. 41(2), pages 201-213, March.
    16. Burak Can & Peter Csoka & Emre Ergin, 2017. "How to choose a non-manipulable delegation?," CERS-IE WORKING PAPERS 1713, Institute of Economics, Centre for Economic and Regional Studies.
    17. Battal Doğan & Semih Koray, 2015. "Maskin-monotonic scoring rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(2), pages 423-432, February.
    18. Sebastian Bervoets & Vincent Merlin, 2012. "Gerrymander-proof representative democracies," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 473-488, August.
    19. Ning Neil Yu, 2013. "A one-shot proof of Arrow’s theorem and the Gibbard–Satterthwaite theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 145-149, November.
    20. Michel Breton & Vera Zaporozhets, 2009. "On the equivalence of coalitional and individual strategy-proofness properties," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 287-309, August.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/delvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.