IDEAS home Printed from https://ideas.repec.org/p/has/discpr/1713.html
   My bibliography  Save this paper

How to choose a non-manipulable delegation?

Author

Listed:
  • Burak Can

    (Maastricht University, School of Business and Economics)

  • Peter Csoka

    (“Momentum” Game Theory Research Group, Centre for Economic and Regional Studies, Hungarian Academy of Sciences and Corvinus University of Budapest)

  • Emre Ergin

    (PhD, Maastricht University, School of Business and Economics)

Abstract

This paper analyzes how to choose a delegation, a committee to represent a society such as in a peace conference. We propose normative conditions and seek optimal, consistent, neutral, and non-manipulable ways to choose a delegation. We show that a class of threshold rules are characterized by these criteria. The rules do not choose a fixed number of delegates, but instead require different sizes of delegations, depending on the heterogeneity in society. Therefore the resulting delegations are very inclusive, and with t delegates the ratio of individuals whose opinions are not included is always below (0:5)t, following the well-known Zeno's dichotomy. For instance a delegation of size 2 should have at least 75% support from the society and therefore only less than 25% of the opinion pool can be neglected.

Suggested Citation

  • Burak Can & Peter Csoka & Emre Ergin, 2017. "How to choose a non-manipulable delegation?," CERS-IE WORKING PAPERS 1713, Institute of Economics, Centre for Economic and Regional Studies.
  • Handle: RePEc:has:discpr:1713
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/mtdp/MTDP1713.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sato, Shin, 2013. "A sufficient condition for the equivalence of strategy-proofness and nonmanipulability by preferences adjacent to the sincere one," Journal of Economic Theory, Elsevier, vol. 148(1), pages 259-278.
    2. Barbera, Salvador & Dutta, Bhaskar & Sen, Arunava, 2005. "Corrigendum to "Strategy-proof social choice correspondences" [J. Econ. Theory 101 (2001) 374-394]," Journal of Economic Theory, Elsevier, vol. 120(2), pages 275-275, February.
    3. Athanasoglou, Stergios, 2016. "Strategyproof and efficient preference aggregation with Kemeny-based criteria," Games and Economic Behavior, Elsevier, vol. 95(C), pages 156-167.
    4. Can, Burak & Storcken, Ton, 2018. "A re-characterization of the Kemeny distance," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 112-116.
    5. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    6. Bossert, Walter & Sprumont, Yves, 2014. "Strategy-proof preference aggregation: Possibilities and characterizations," Games and Economic Behavior, Elsevier, vol. 85(C), pages 109-126.
    7. Barberà, Salvador, 2011. "Chapter Twenty-Five - Strategyproof Social Choice," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 2, chapter 25, pages 731-831, Elsevier.
    8. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    9. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
    10. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-330, March.
    11. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Csóka, Péter & Kondor, Gábor, 2019. "Delegációk igazságos kiválasztása társadalmi választások elméletével [Choosing a fair delegation by social choice theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 771-787.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can, Burak & Csóka, Péter & Ergin, Emre, 2017. "How to choose a delegation for a peace conference?," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    2. Burak Can & Péter Csóka & Emre Ergin, 2021. "How to choose a fair delegation?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(4), pages 1339-1373, November.
    3. Csóka, Péter & Kondor, Gábor, 2019. "Delegációk igazságos kiválasztása társadalmi választások elméletével [Choosing a fair delegation by social choice theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 771-787.
    4. Stergios Athanasoglou & Somouaoga Bonkoungou & Lars Ehlers, 2023. "Strategy-proof preference aggregation and the anonymity-neutrality tradeoff," Working Papers 519, University of Milano-Bicocca, Department of Economics.
    5. Bock, Hans-Hermann & Day, William H. E. & McMorris, F. R., 1998. "Consensus rules for committee elections," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 219-232, May.
    6. Brandt, Felix & Saile, Christian & Stricker, Christian, 2022. "Strategyproof social choice when preferences and outcomes may contain ties," Journal of Economic Theory, Elsevier, vol. 202(C).
    7. Erdamar, Bora & Sanver, M. Remzi & Sato, Shin, 2017. "Evaluationwise strategy-proofness," Games and Economic Behavior, Elsevier, vol. 106(C), pages 227-238.
    8. Bossert, Walter & Sprumont, Yves, 2014. "Strategy-proof preference aggregation: Possibilities and characterizations," Games and Economic Behavior, Elsevier, vol. 85(C), pages 109-126.
    9. Haeringer, Guillaume & Hałaburda, Hanna, 2016. "Monotone strategyproofness," Games and Economic Behavior, Elsevier, vol. 98(C), pages 68-77.
    10. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    11. Brady, Richard L. & Chambers, Christopher P., 2015. "Spatial implementation," Games and Economic Behavior, Elsevier, vol. 94(C), pages 200-205.
    12. Peyton Young, 1995. "Optimal Voting Rules," Journal of Economic Perspectives, American Economic Association, vol. 9(1), pages 51-64, Winter.
    13. Gilbert Laffond & Jean Lainé & M. Remzi Sanver, 2020. "Metrizable preferences over preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 177-191, June.
    14. Shin Sato, 2015. "Bounded response and the equivalence of nonmanipulability and independence of irrelevant alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 133-149, January.
    15. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    16. Walter Bossert & Yves Sprumont, 2012. "Strategy-proof Preference Aggregation," Cahiers de recherche 12-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    17. Stergios, Athanasoglou, 2017. "An investigation of weak-veto rules in preference aggregation," Working Papers 363, University of Milano-Bicocca, Department of Economics, revised 18 Feb 2017.
    18. Shurojit Chatterji & Huaxia Zeng, 2022. "A Taxonomy of Non-dictatorial Unidimensional Domains," Papers 2201.00496, arXiv.org, revised Oct 2022.
    19. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    20. Roy, Souvik & Storcken, Ton, 2019. "A characterization of possibility domains in strategic voting," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 46-55.

    More about this item

    Keywords

    Aggregation Rules; Committee Selection; Conflict Management; Kemeny Distance; Strategy-proofness;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:1713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nora Horvath (email available below). General contact details of provider: https://edirc.repec.org/data/iehashu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.