IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/9813.html
   My bibliography  Save this paper

An Extension of the Concordet Criterion and Kemeny Orders

Author

Listed:
  • Truchon, Michel

Abstract

The usual Condorcet Criterion says that if an alternative is ranked ahead of all other alternatives by an absolute majority of voters, it should be declared the winner. The following partial extension of this criterion to other ranks is proposed: If an alternative is consistently ranked ahead of another alternative by an absolute majority of voters, it should be ahead in the final ranking. The term "consistently" refers to the absence of cycles in the majority relation involving these two alternatives. If there are cycles, this criterion gives partial orders that can be completed with the Kemeny rule. An algorithm to construct Kemeny orders is presented. It is based on a result saying that a complete Kemeny order over all alternatives can be obtained by splicing together Kemeny orders on the subsets of an admissible partition of the alternatives underlying the Extended Condorcet Criterion. Le critère usuel de Condorcet exige que, si une alternative est classée avant toutes les autres par une majorité de votants, elle devrait être déclarée vainqueur. Une extension partielle de ce critère aux autres rangs est proposée: Si une alternative est classée avant une autre de manière cohérente par une majorité de votants, elle devrait l'être dans le classement final. La cohérence réfère à l'absence de cycle dans la relation majoritaire impliquant ces deux alternatives. En cas de cycles, ce critère donne des ordres partiels, qui peuvent être complétés avec la règle de Kemeny. Un algorithme pour la construction des ordres de Kemeny est présenté. Il s'appuie sur un résultat affirmant qu'un ordre de Kemeny peut être obtenu en juxtaposant des ordres de Kemeny sur les sous-ensembles d'une partition des alternatives sous-jacente au critère de Condorcet généralisé.

Suggested Citation

  • Truchon, Michel, 1998. "An Extension of the Concordet Criterion and Kemeny Orders," Cahiers de recherche 9813, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:9813
    as

    Download full text from publisher

    File URL: http://www.ecn.ulaval.ca/w3/recherche/cahiers/1998/9813.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barthelemy, J. P. & Guenoche, A. & Hudry, O., 1989. "Median linear orders: Heuristics and a branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 42(3), pages 313-325, October.
    2. Truchon, M., 1998. "Figure Skating and the Theory of Social Choice," Papers 9814, Laval - Recherche en Politique Economique.
    3. I. Good, 1971. "A note on condorcet sets," Public Choice, Springer, vol. 10(1), pages 97-101, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Truchon, 2002. "Choix social et comités de sélection : le cas du patinage artistique," CIRANO Burgundy Reports 2002rb-02, CIRANO.
    2. Truchon, Michel, 1999. "La démocratie : oui, mais laquelle?," L'Actualité Economique, Société Canadienne de Science Economique, vol. 75(1), pages 189-214, mars-juin.
    3. Shanfeng Zhu & Qizhi Fang & Weimin Zheng, 2004. "Social Choice For Data Fusion," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 619-631.
    4. Truchon, Michel, 1998. "Figure Skating and the Theory of Social Choice," Cahiers de recherche 9814, Université Laval - Département d'économique.
    5. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    6. Mohamed Drissi-Bakhkhat & Michel Truchon, 2004. "Maximum likelihood approach to vote aggregation with variable probabilities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 161-185, October.
    7. Giuseppe Munda, 2012. "Choosing Aggregation Rules for Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 109(3), pages 337-354, December.
    8. Giuseppe Munda & Michela Nardo, 2009. "Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1513-1523.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truchon, Michel, 1998. "Figure Skating and the Theory of Social Choice," Cahiers de recherche 9814, Université Laval - Département d'économique.
    2. Azzini, Ivano & Munda, Giuseppe, 2020. "A new approach for identifying the Kemeny median ranking," European Journal of Operational Research, Elsevier, vol. 281(2), pages 388-401.
    3. Truchon, Michel, 2004. "Aggregation of Rankings in Figure Skating," Cahiers de recherche 0402, Université Laval - Département d'économique.
    4. Le Breton, Michel & Truchon, Michel, 1997. "A Borda measure for social choice functions," Mathematical Social Sciences, Elsevier, vol. 34(3), pages 249-272, October.
    5. De Donder, Philippe & Le Breton, Michel & Truchon, Michel, 2000. "Choosing from a weighted tournament1," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 85-109, July.
    6. Bernard Monjardet & Jean-Pierre Barthélemy & Olivier Hudry & Bruno Leclerc, 2009. "Metric and latticial medians," Post-Print halshs-00408174, HAL.
    7. William Gehrlein, 2002. "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences ," Theory and Decision, Springer, vol. 52(2), pages 171-199, March.
    8. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    9. Nehring, Klaus & Pivato, Marcus & Puppe, Clemens, 2014. "The Condorcet set: Majority voting over interconnected propositions," Journal of Economic Theory, Elsevier, vol. 151(C), pages 268-303.
    10. Roemer, Thomas A. & Ahmadi, Reza, 2010. "Models for concurrent product and process design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 601-613, June.
    11. Brandt, Felix, 2011. "Minimal stable sets in tournaments," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1481-1499, July.
    12. Fuad Aleskerov & Andrey Subochev, 2013. "Modeling optimal social choice: matrix-vector representation of various solution concepts based on majority rule," Journal of Global Optimization, Springer, vol. 56(2), pages 737-756, June.
    13. Berghammer, Rudolf & Rusinowska, Agnieszka & de Swart, Harrie, 2013. "Computing tournament solutions using relation algebra and RelView," European Journal of Operational Research, Elsevier, vol. 226(3), pages 636-645.
    14. Giuseppe Munda, 2012. "Intensity of preference and related uncertainty in non-compensatory aggregation rules," Theory and Decision, Springer, vol. 73(4), pages 649-669, October.
    15. repec:hal:pseose:hal-00756696 is not listed on IDEAS
    16. Mohamed Drissi-Bakhkhat & Michel Truchon, 2004. "Maximum likelihood approach to vote aggregation with variable probabilities," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(2), pages 161-185, October.
    17. Giuseppe Munda, 2015. "Beyond Gdp: An Overview Of Measurement Issues In Redefining ‘Wealth’," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 403-422, July.
    18. Eric Kamwa & Vincent Merlin, 2018. "Coincidence of Condorcet committees," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 171-189, January.
    19. Kamwa, Eric, 2017. "On stable rules for selecting committees," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 36-44.
    20. Truchon, Michel & Gordon, Stephen, 2009. "Statistical comparison of aggregation rules for votes," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 199-212, March.
    21. Christian Saile & Warut Suksompong, 2020. "Robust bounds on choosing from large tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(1), pages 87-110, January.

    More about this item

    Keywords

    aggregation; Condorcet Criterion; Kemeny orders; algorithm;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/delvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.