IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i10p2420-2433.html
   My bibliography  Save this article

Combining conditional and unconditional moment restrictions with missing responses

Author

Listed:
  • Yuan, Xiaohui
  • Liu, Tianqing
  • Lin, Nan
  • Zhang, Baoxue

Abstract

Many statistical models, e.g. regression models, can be viewed as conditional moment restrictions when distributional assumptions on the error term are not assumed. For such models, several estimators that achieve the semiparametric efficiency bound have been proposed. However, in many studies, auxiliary information is available as unconditional moment restrictions. Meanwhile, we also consider the presence of missing responses. We propose the combined empirical likelihood (CEL) estimator to incorporate such auxiliary information to improve the estimation efficiency of the conditional moment restriction models. We show that, when assuming responses are strongly ignorable missing at random, the CEL estimator achieves better efficiency than the previous estimators due to utilization of the auxiliary information. Based on the asymptotic property of the CEL estimator, we also develop Wilks' type tests and corresponding confidence regions for the model parameter and the mean response. Since kernel smoothing is used, the CEL method may have difficulty for problems with high dimensional covariates. In such situations, we propose an instrumental variable-based empirical likelihood (IVEL) method to handle this problem. The merit of the CEL and IVEL are further illustrated through simulation studies.

Suggested Citation

  • Yuan, Xiaohui & Liu, Tianqing & Lin, Nan & Zhang, Baoxue, 2010. "Combining conditional and unconditional moment restrictions with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2420-2433, November.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2420-2433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00132-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
    3. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    4. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    5. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    6. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    7. Sanjay Chaudhuri & Mark S. Handcock & Michael S. Rendall, 2008. "Generalized linear models incorporating population level information: an empirical‐likelihood‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 311-328, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tianqing & Yuan, Xiaohui & Li, Zhaohai & Li, Yuanzhang, 2013. "Empirical and weighted conditional likelihoods for matched case-control studies with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 185-199.
    2. Tianqing Liu & Xiaohui Yuan, 2020. "Empirical likelihood-based weighted rank regression with missing covariates," Statistical Papers, Springer, vol. 61(2), pages 697-725, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    2. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    3. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    4. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    6. Hahn, Jinyong, 1997. "Efficient estimation of panel data models with sequential moment restrictions," Journal of Econometrics, Elsevier, vol. 79(1), pages 1-21, July.
    7. Inkmann, Joachim, 1997. "Circumventing multiple integration: A comparison of GMM and SML estimators for the panel probit model," Discussion Papers, Series II 339, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    8. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    9. Bertschek, Irene & Lechner, Michael, 1998. "Convenient estimators for the panel probit model," Journal of Econometrics, Elsevier, vol. 87(2), pages 329-371, September.
    10. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    11. Inkmann, Joachim, 2000. "Misspecified heteroskedasticity in the panel probit model: A small sample comparison of GMM and SML estimators," Journal of Econometrics, Elsevier, vol. 97(2), pages 227-259, August.
    12. Chamberlain, Gary, 2022. "Feedback in panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 4-20.
    13. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    14. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2011. "Estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 87-99.
    15. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Stanislav Anatolyev, 2007. "Optimal instruments (in Russian)," Quantile, Quantile, issue 2, pages 61-69, March.
    17. Daiji Kawaguchi & Yukitoshi Matsushita & Hisahiro Naito, 2017. "Moment Estimation of the Probit Model with an Endogenous Continuous Regressor," The Japanese Economic Review, Springer, vol. 68(1), pages 48-62, March.
    18. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    19. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    20. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2420-2433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.