IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v188y2015i2p363-377.html
   My bibliography  Save this article

Set identification of the censored quantile regression model for short panels with fixed effects

Author

Listed:
  • Li, Tong
  • Oka, Tatsushi

Abstract

This paper studies identification and estimation of a censored quantile regression model for short panel data with fixed effects. Using the redistribution-of-mass idea, we obtain bounds on the conditional distribution of differences of the model across periods, under conditional quantile restrictions together with a weak conditional independence assumption along the lines of Rosen (2012). The inversion of the distribution bounds characterizes the sharp identified set via a set of inequalities based on conditional quantile functions. Due to the presence of censoring, some of the inequalities defining the identified set hold trivially and have no identification power. Moreover, those trivial inequalities cause a difficulty in estimating the identified set. To deal with the issue, we propose a two-step estimation method, where the first step consists of excluding trivial inequalities and the second step performs minimization of a convex criterion function using the remaining inequalities. We establish asymptotic properties of the set estimator and also consider sufficient conditions under which point identification can be attained.

Suggested Citation

  • Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
  • Handle: RePEc:eee:econom:v:188:y:2015:i:2:p:363-377
    DOI: 10.1016/j.jeconom.2015.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615000743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2015.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    8. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    9. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    10. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    11. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    12. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    13. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
    14. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, July.
    15. Bo E. Honoré & Elie Tamer, 2006. "Bounds on Parameters in Panel Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 74(3), pages 611-629, May.
    16. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    17. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    18. Harding, Matthew & Lamarche, Carlos, 2009. "A quantile regression approach for estimating panel data models using instrumental variables," Economics Letters, Elsevier, vol. 104(3), pages 133-135, September.
    19. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    20. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    21. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    22. Honore, Bo E, 1992. "Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models with Fixed Effects," Econometrica, Econometric Society, vol. 60(3), pages 533-565, May.
    23. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    24. Chen, Songnian & Khan, Shakeeb, 2008. "Semiparametric Estimation Of Nonstationary Censored Panel Data Models With Time Varying Factor Loads," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1149-1173, October.
    25. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    26. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    27. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    28. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    29. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.
    30. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    31. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    32. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    33. Antonio F. Galvao & Carlos Lamarche & Luiz Renato Lima, 2013. "Estimation of Censored Quantile Regression for Panel Data With Fixed Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1075-1089, September.
    34. Abrevaya, Jason, 2000. "Rank estimation of a generalized fixed-effects regression model," Journal of Econometrics, Elsevier, vol. 95(1), pages 1-23, March.
    35. Kaido, Hiroaki, 2016. "A dual approach to inference for partially identified econometric models," Journal of Econometrics, Elsevier, vol. 192(1), pages 269-290.
    36. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    37. Graham, Bryan S. & Hahn, Jinyong & Powell, James L., 2009. "The incidental parameter problem in a non-differentiable panel data model," Economics Letters, Elsevier, vol. 105(2), pages 181-182, November.
    38. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    39. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    40. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    41. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    42. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    43. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    44. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    45. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    46. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    47. Hong H. & Chernozhukov V., 2002. "Three-Step Censored Quantile Regression and Extramarital Affairs," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 872-882, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    2. Choi, Jin-young & Lee, Myoung-jae, 2019. "Twins are more different than commonly believed, but made less different by compensating behaviors," Economics & Human Biology, Elsevier, vol. 35(C), pages 18-31.
    3. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    4. Arie Beresteanu, 2016. "Quantile Regression with Interval Data," Working Paper 5991, Department of Economics, University of Pittsburgh.
    5. Shosei Sakaguchi, 2020. "Partial Identification and Inference in Duration Models with Endogenous Censoring," CeMMAP working papers CWP8/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Shosei Sakaguchi, 2021. "Partial Identification and Inference in Duration Models with Endogenous Censoring," Papers 2107.00928, arXiv.org.
    7. Shosei Sakaguchi, 2024. "Partial identification and inference in duration models with endogenous censoring," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 308-326, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosen, Adam M., 2012. "Set identification via quantile restrictions in short panels," Journal of Econometrics, Elsevier, vol. 166(1), pages 127-137.
    2. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Armstrong, Timothy B., 2015. "Asymptotically exact inference in conditional moment inequality models," Journal of Econometrics, Elsevier, vol. 186(1), pages 51-65.
    5. repec:cwl:cwldpp:1761rr is not listed on IDEAS
    6. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    8. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    9. Jason R. Blevins, 2013. "Non-Standard Rates of Convergence of Criterion-Function-Based Set Estimators," Working Papers 13-02, Ohio State University, Department of Economics.
    10. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    11. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    12. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    13. Armstrong, Timothy B. & Chan, Hock Peng, 2016. "Multiscale adaptive inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.
    14. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    15. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    16. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    17. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
    19. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    20. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    21. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.

    More about this item

    Keywords

    Conditional quantiles; Partial identification; Panel data; Fixed effects; Censoring;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:188:y:2015:i:2:p:363-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.