IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp1400.html
   My bibliography  Save this paper

Decomposing the Gender Wage Gap in the Netherlands with Sample Selection Adjustments

Author

Listed:
  • Albrecht, James

    (Georgetown University)

  • van Vuuren, Aico

    (University of Groningen)

  • Vroman, Susan

    (Georgetown University)

Abstract

In this paper, we use quantile regression decomposition methods to analyze the gender gap between men and women who work full time in the Netherlands. Because the fraction of women working full time in the Netherlands is quite low, sample selection is a serious issue. In addition to shedding light on the sources of the gender gap in the Netherlands, we make two methodological contributions. First, we prove that the Machado-Mata quantile regression decomposition procedure yields consistent and asymptotically normal estimates of the quantiles of the counterfactual distribution that it is designed to simulate. Second, we show how the technique can be extended to account for selection. We find that there is a positive selection of women into full-time work in the Netherlands; i.e., women who get the greatest return to working full time do work full time. We find that about two thirds of this selection is due to observables such as education and experience with the remainder due to unobservables. Our decompositions show that the majority of the gender log wage gap is due to differences between men and women in returns to labor market characteristics rather than to differences in the characteristics. This is true across the wage distribution, particularly in the top half of the distribution.

Suggested Citation

  • Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2004. "Decomposing the Gender Wage Gap in the Netherlands with Sample Selection Adjustments," IZA Discussion Papers 1400, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp1400
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp1400.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    2. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    3. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    4. Manski, C.F., 1990. "The Selection Problem," Working papers 90-12, Wisconsin Madison - Social Systems.
    5. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    6. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    7. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    8. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    9. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    10. Dorothe Bonjour & Michael Gerfin, 2001. "The unequal distribution of unequal pay - An empirical analysis of the gender wage gap in Switzerland," Empirical Economics, Springer, vol. 26(2), pages 407-427.
    11. James Albrecht & Anders Bjorklund & Susan Vroman, 2003. "Is There a Glass Ceiling in Sweden?," Journal of Labor Economics, University of Chicago Press, vol. 21(1), pages 145-177, January.
    12. Dolado, Juan J & Llorens, Vanesa, 2004. "Gender Wage Gaps by Education in Spain: Glass Floors versus Glass Ceilings," CEPR Discussion Papers 4203, C.E.P.R. Discussion Papers.
    13. Gubta, Nabanita Datta & Oaxaca, Ronald L. & Smith, Nina, 2002. "Swimming Upstream, Floating Downstream: Trends in the U.S. and Danish Gender Wage Gaps," CLS Working Papers 01-6, University of Aarhus, Aarhus School of Business, Centre for Labour Market and Social Research.
    14. Gerard J. van den Berg & Geert Ridder, 1998. "An Empirical Equilibrium Search Model of the Labor Market," Econometrica, Econometric Society, vol. 66(5), pages 1183-1222, September.
    15. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    16. van den Berg, Gerard J, 1999. "Empirical Inference with Equilibrium Search Models of the Labour Market," Economic Journal, Royal Economic Society, vol. 109(456), pages 283-306, June.
    17. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5, March.
    18. Francis Vella, 1998. "Estimating Models with Sample Selection Bias: A Survey," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 127-169.
    19. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    20. Bernd Fitzenberger & Gaby Wunderlich, 2002. "Gender Wage Differences in West Germany: A Cohort Analysis," German Economic Review, Verein für Socialpolitik, vol. 3(4), pages 379-414, November.
    21. Fitzenberger, Bernd & Wunderlich, Gaby, 2001. "The changing gender gap across the wage distribution in the UK," ZEW Discussion Papers 01-56, ZEW - Leibniz Centre for European Economic Research.
    22. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2009. "Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands," Labour Economics, Elsevier, vol. 16(4), pages 383-396, August.
    2. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    3. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    4. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    6. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    7. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    8. Picchio, Matteo & Mussida, Chiara, 2011. "Gender wage gap: A semi-parametric approach with sample selection correction," Labour Economics, Elsevier, vol. 18(5), pages 564-578, October.
    9. Claudio Lucifora & Dominique Meurs, 2006. "The Public Sector Pay Gap In France, Great Britain And Italy," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 52(1), pages 43-59, March.
    10. Christopher Bollinger & James P. Ziliak & Kenneth R. Troske, 2011. "Down from the Mountain: Skill Upgrading and Wages in Appalachia," Journal of Labor Economics, University of Chicago Press, vol. 29(4), pages 819-857.
    11. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    12. Richard Blundell & James P. Ziliak & Hugo Lopez, 2023. "Labour market inequality and the changing life cycle profile of male and female wages," IFS Working Papers W23/16, Institute for Fiscal Studies.
    13. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    14. Michael Lechner & Blaise Melly, 2007. "Earnings Effects of Training Programs," University of St. Gallen Department of Economics working paper series 2007 2007-28, Department of Economics, University of St. Gallen.
    15. Thomas Grandner & Dieter Gstach, 2015. "Decomposing wage discrimination in Germany and Austria with counterfactual densities," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 49-76, February.
    16. Thomas Grandner & Dieter Gstach, 2012. "Decomposing wage discrimination in Germany and Austria with counterfactual densities," Department of Economics Working Papers wuwp145, Vienna University of Economics and Business, Department of Economics.
    17. Maasoumi, Esfandiar & Wang, Le, 2017. "What can we learn about the racial gap in the presence of sample selection?," Journal of Econometrics, Elsevier, vol. 199(2), pages 117-130.
    18. René Böheim & Klemens Himpele & Helmut Mahringer & Christine Zulehner, 2013. "The distribution of the gender wage gap in Austria: evidence from matched employer-employee data and tax records [Eine Auswertung von Steuer- und Sozialversicherungsdaten zur Untersuchung der Verte," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 46(1), pages 19-34, March.
    19. Böheim, René & Himpele, Klemens & Mahringer, Helmut & Zulehner, Christine, 2013. "The distribution of the gender wage gap in Austria : evidence from matched employer-employee data and tax records," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(1), pages 19-34.
    20. Grandner, Thomas & Gstach, Dieter, 2012. "Decomposing wage discrimination in Germany and Austria with counterfactual densities," Department of Economics Working Paper Series 145, WU Vienna University of Economics and Business.

    More about this item

    Keywords

    quantile regression; selection; gender;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J71 - Labor and Demographic Economics - - Labor Discrimination - - - Hiring and Firing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp1400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.