IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v199y2017i2p117-130.html
   My bibliography  Save this article

What can we learn about the racial gap in the presence of sample selection?

Author

Listed:
  • Maasoumi, Esfandiar
  • Wang, Le

Abstract

We examine the distance and relations between the distributions of wages for two exogenously identified groups (black and white women here). The literature commonly employs decomposition methods for the conditional means, to propose explanations for observed wage differentials, as “structural” components, attributable to difference in market structures, and the “composition” components, attributable to difference in characteristics and skills. Estimation of these components is often hampered by restrictive wage structure assumptions, and sample selection issues (wages are only observed for those working). We address these issues by first utilizing modern strategies in the treatment effects literature to identify the entire distributions of wages and counterfactual wages among working women, which afford a separation of composition and market effects. We avoid restrictive wage structure modeling by nonparametric inverse probability weighting methods. This approach allows for decomposition beyond the gap at the mean, and can deliver distributional statistics of interest, such as inequalities and target quantiles. Accounting for selection, we extend the basic framework to provide a computationally convenient way to identify bounds on the decomposed components for the whole population. We employ these methods to understand the sources and dynamics of the racial gap in the U.S. Our analysis reveals that what may be learned about the racial gap is impacted by labor force participation, and is also sensitive to the choice of population of interest. Our results question what may be gleaned from the commonly reported point estimates when sample selection is neglected.

Suggested Citation

  • Maasoumi, Esfandiar & Wang, Le, 2017. "What can we learn about the racial gap in the presence of sample selection?," Journal of Econometrics, Elsevier, vol. 199(2), pages 117-130.
  • Handle: RePEc:eee:econom:v:199:y:2017:i:2:p:117-130
    DOI: 10.1016/j.jeconom.2017.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617300660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angrist, Joshua D., 1997. "Conditional independence in sample selection models," Economics Letters, Elsevier, vol. 54(2), pages 103-112, February.
    2. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    3. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    4. Francine D. Blau & Andrea H. Beller, 1988. "Trends in Earnings Differentials by Gender, 1971–1981," ILR Review, Cornell University, ILR School, vol. 41(4), pages 513-529, July.
    5. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    6. Francine D. Blau & Lawrence M. Kahn, 2017. "The Gender Wage Gap: Extent, Trends, and Explanations," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 789-865, September.
    7. Christopher R. Bollinger & Barry T. Hirsch, 2013. "Is Earnings Nonresponse Ignorable?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 407-416, May.
    8. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    9. repec:eee:labchp:v:3:y:1999:i:pc:p:3143-3259 is not listed on IDEAS
    10. Yu-Chin Hsu & Kamhon Kan & Tsung-Chih Lai, 2015. "Distribution and Quantile Structural Functions in Treatment Effect Models: Application to Smoking Effects on Wages," IEAS Working Paper : academic research 15-A001, Institute of Economics, Academia Sinica, Taipei, Taiwan, revised Apr 2016.
    11. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    12. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    13. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    14. Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
    15. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2014. "Selection and the Measured Black-White Wage Gap Among Young Women Revisited," IZA Discussion Papers 8005, Institute of Labor Economics (IZA).
    16. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    17. Millimet, Daniel L. & Tchernis, Rusty, 2009. "On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
    18. Dan A. Black & Amelia M. Haviland & Seth G. Sanders & Lowell J. Taylor, 2008. "Gender Wage Disparities among the Highly Educated," Journal of Human Resources, University of Wisconsin Press, vol. 43(3), pages 630-659.
    19. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    20. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    21. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    22. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    23. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    24. Derek Neal, 2004. "The Measured Black-White Wage Gap among Women Is Too Small," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 1-28, February.
    25. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    26. Machado, Cecilia, 2012. "Selection, Heterogeneity and the Gender Wage Gap," IZA Discussion Papers 7005, Institute of Labor Economics (IZA).
    27. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    28. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    29. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2009. "Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands," Labour Economics, Elsevier, vol. 16(4), pages 383-396, August.
    30. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    31. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    32. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    33. Altonji, Joseph G. & Blank, Rebecca M., 1999. "Race and gender in the labor market," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 48, pages 3143-3259, Elsevier.
    34. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    35. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
    36. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    37. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    38. James Albrecht & Anders Bjorklund & Susan Vroman, 2003. "Is There a Glass Ceiling in Sweden?," Journal of Labor Economics, University of Chicago Press, vol. 21(1), pages 145-177, January.
    39. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-442, June.
    40. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    41. Casey B. Mulligan & Yona Rubinstein, 2008. "Selection, Investment, and Women's Relative Wages Over Time," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 1061-1110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klavs Ciprikis & Damien Cassells & Jenny Berrill, 2020. "Transgender labour market outcomes: Evidence from the United States," Gender, Work and Organization, Wiley Blackwell, vol. 27(6), pages 1378-1401, November.
    2. Holly Monti & Martha Stinson & Lori Zehr, 2020. "How Long Do Early Career Decisions Follow Women? The Impact of Employer History on the Gender Wage Gap," Journal of Labor Research, Springer, vol. 41(3), pages 189-232, September.
    3. Anastasia Cozarenco & Ariane Szafarz, 2024. "How to identify lending bias when the lender's goal is not profit?," Working Papers CEB 24-007, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    2. Christopher Bollinger & James P. Ziliak & Kenneth R. Troske, 2011. "Down from the Mountain: Skill Upgrading and Wages in Appalachia," Journal of Labor Economics, University of Chicago Press, vol. 29(4), pages 819-857.
    3. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    4. Picchio, Matteo & Mussida, Chiara, 2011. "Gender wage gap: A semi-parametric approach with sample selection correction," Labour Economics, Elsevier, vol. 18(5), pages 564-578, October.
    5. Carla Canelas & Silvia Salazar, 2014. "Gender and ethnic inequalities in LAC countries," IZA Journal of Labor & Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 3(1), pages 1-15, December.
    6. Carla Canelas & Silvia Salazar, 2014. "Gender and Ethnicity in Bolivia, Ecuador and Guatemala," Documents de travail du Centre d'Economie de la Sorbonne 14021, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Sonja C. Kassenboehmer & Mathias G. Sinning, 2014. "Distributional Changes in the Gender Wage Gap," ILR Review, Cornell University, ILR School, vol. 67(2), pages 335-361, April.
    8. Joanna Małgorzata Landmesser, 2019. "Decomposition Of Gender Wage Gap In Poland Using Counterfactual Distribution With Sample Selection," Statistics in Transition New Series, Polish Statistical Association, vol. 20(3), pages 171-186, September.
    9. Richard Blundell & James P. Ziliak & Hugo Lopez, 2023. "Labour market inequality and the changing life cycle profile of male and female wages," IFS Working Papers W23/16, Institute for Fiscal Studies.
    10. Philippe Van Kerm, 2013. "Generalized measures of wage differentials," Empirical Economics, Springer, vol. 45(1), pages 465-482, August.
    11. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    12. Thomas Grandner & Dieter Gstach, 2012. "Decomposing wage discrimination in Germany and Austria with counterfactual densities," Department of Economics Working Papers wuwp145, Vienna University of Economics and Business, Department of Economics.
    13. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    14. Carla Canelas & Silvia Salazar, 2014. "Gender and Ethnic Inequalities in LAC Countries," Documents de travail du Centre d'Economie de la Sorbonne 14021r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2014.
    15. Elass, Kenza, 2024. "Male and female selection effects on gender wage gaps in three countries," Labour Economics, Elsevier, vol. 87(C).
    16. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    17. Sloczynski, Tymon, 2018. "Average Gaps and Oaxaca's Blinder Decompositions: A Cautionary Tale about Regression Estimates of Racial Differences in Labor Market Outcomes," IZA Discussion Papers 12041, Institute of Labor Economics (IZA).
    18. Sloczynski, Tymon, 2015. "Average Wage Gaps and Oaxaca–Blinder Decompositions," IZA Discussion Papers 9036, Institute of Labor Economics (IZA).
    19. Carla Canelas & Silvia Salazar, 2014. "Gender and Ethnic Inequalities in LAC Countries," Post-Print halshs-00973891, HAL.
    20. Patricia Gallego Granados, 2019. "The Part-Time Wage Gap across the Wage Distribution," Discussion Papers of DIW Berlin 1791, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    Decomposition; Distributional analysis; Racial wage gap; Sample selection; Partial identification; Treatment effects; Women;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:199:y:2017:i:2:p:117-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.