IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i1d10.1007_s11116-015-9626-x.html
   My bibliography  Save this article

Estimation of multinomial probit-kernel integrated choice and latent variable model: comparison on one sequential and two simultaneous approaches

Author

Listed:
  • Xuemei Fu

    (Shanghai Jiao Tong University)

  • Zhicai Juan

    (Shanghai Jiao Tong University)

Abstract

Integrated choice and latent variable (ICLV) model incorporates latent factors into standard discrete choice model with aim to provide greater explanatory power. Using simulated datasets, this study makes a comparison among three estimation approaches corresponding to the sequential approach and two simultaneous approaches including the maximum simulated likelihood with GHK estimator and maximum approximate composite marginal likelihood (MACML) approach, to evaluate their abilities to recover the underlying parameters of multinomial probit-kernel ICLV model. The results show that both simultaneous approaches outperform the sequential approach in terms of estimates accuracy and efficiency irrespective of the sample sizes, and the MACML approach is the most preferable due to its best performance on recovering true values of parameters with relatively small standard errors, especially when the sample size is large enough.

Suggested Citation

  • Xuemei Fu & Zhicai Juan, 2017. "Estimation of multinomial probit-kernel integrated choice and latent variable model: comparison on one sequential and two simultaneous approaches," Transportation, Springer, vol. 44(1), pages 91-116, January.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9626-x
    DOI: 10.1007/s11116-015-9626-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-015-9626-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-015-9626-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Ricardo Daziano & Denis Bolduc, 2013. "Covariance, identification, and finite-sample performance of the MSL and Bayes estimators of a logit model with latent attributes," Transportation, Springer, vol. 40(3), pages 647-670, May.
    3. Lorenzo Cappellari & Stephen P. Jenkins, 2006. "Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation," Stata Journal, StataCorp LP, vol. 6(2), pages 156-189, June.
    4. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    5. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    6. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    7. Elisabetta Cherchi & Juan Dios Ortúzar, 2008. "Empirical Identification in the Mixed Logit Model: Analysing the Effect of Data Richness," Networks and Spatial Economics, Springer, vol. 8(2), pages 109-124, September.
    8. Bhat, Chandra R. & Sidharthan, Raghuprasad, 2011. "A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 940-953, August.
    9. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    10. Williams, H. C. W. L. & Ortuzar, J. D., 1982. "Behavioural theories of dispersion and the mis-specification of travel demand models," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 167-219, June.
    11. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
    13. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    14. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    15. Gibson, Fiona L. & Burton, Michael P., 2009. "Biased estimates in discrete choice models: the appropriate inclusion of psychometric data into the valuation of recycled wastewater," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47943, Australian Agricultural and Resource Economics Society.
    16. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    17. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    18. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    19. Bhat, Chandra R. & Dubey, Subodh K., 2014. "A new estimation approach to integrate latent psychological constructs in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 68-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batram, Manuel & Bauer, Dietmar, 2019. "On consistency of the MACML approach to discrete choice modelling," Journal of choice modelling, Elsevier, vol. 30(C), pages 1-16.
    2. Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
    3. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    2. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    3. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    4. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.
    5. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    6. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    7. Müller, Tobias & Boes, Stefan, 2016. "Disability Insurance Benefits and Labor Supply Choices: Evidence from a Discontinuity in Benefit Awards," MPRA Paper 70957, University Library of Munich, Germany.
    8. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    9. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
    10. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    11. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    12. W. Kuiper & Anton Cozijnsen, 2011. "The Performance of German Firms in the Business-Related Service Sectors Revisited: Differential Evolution Markov Chain Estimation of the Multinomial Probit Model," Computational Economics, Springer;Society for Computational Economics, vol. 37(4), pages 331-362, April.
    13. Ricardo Daziano & Denis Bolduc, 2013. "Covariance, identification, and finite-sample performance of the MSL and Bayes estimators of a logit model with latent attributes," Transportation, Springer, vol. 40(3), pages 647-670, May.
    14. Abay, Kibrom A., 2015. "Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariate binary probit models," Economics Letters, Elsevier, vol. 126(C), pages 51-56.
    15. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    16. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    17. Cheng, Yung-Hsiang & Lai, Yen-Chu, 2024. "Exploring autonomous bus users’ intention: Evidence from positive and negative effects," Transport Policy, Elsevier, vol. 146(C), pages 91-101.
    18. Marcel Paulssen & Dirk Temme & Akshay Vij & Joan Walker, 2014. "Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice," Transportation, Springer, vol. 41(4), pages 873-888, July.
    19. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    20. Bouscasse, H., 2018. "Integrated choice and latent variable models: A literature review on mode choice," Working Papers 2018-07, Grenoble Applied Economics Laboratory (GAEL).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9626-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.