IDEAS home Printed from https://ideas.repec.org/p/iik/wpaper/302.html
   My bibliography  Save this paper

Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes

Author

Listed:
  • Jimut Bahan Chakrabarty

    (Indian Institute of Management Kozhikode)

  • Shovan Chowdhury

    (Indian Institute of Management Kozhikode)

  • Soumya Roy

    (Indian Institute of Management Kozhikode)

Abstract

In order to ensure maintenance of a certain quality level for a product, choosing a suitable life test plan is immensely essential. Since life testing includes as well as impacts various costs, it is important to design a life testing plan incorporating the relevant costs. In this paper, a model is proposed to obtain an optimal life testing plan for non-repairable products sold under general rebate warranty. The proposed model determines the optimal plan by minimizing the suitable costs involved. Type-I generalized hybrid censoring setup for products having Weibull distributed lifetimes is considered for the model presented. Considering both producer’s and consumer’s risk, a constrained optimization approach is followed and appropriate analysis techniques are employed in obtaining the optimal solution. An extensive simulation study is performed for numerical illustration. In order to analyze the sensitivity of the optimal solution due to mis-specification of parameter values and cost components, a well designed sensitivity analysis is incorporated using parameter estimates from real life hybrid censored data set.

Suggested Citation

  • Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2019. "Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes," Working papers 302, Indian Institute of Management Kozhikode.
  • Handle: RePEc:iik:wpaper:302
    as

    Download full text from publisher

    File URL: https://iimk.ac.in/uploads/publications/3035WP%20302%20January.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    2. Bhattacharya, Ritwik & Pradhan, Biswabrata & Dewanji, Anup, 2015. "Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 91-100.
    3. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanmay Sen & Ritwik Bhattacharya & Biswabrata Pradhan & Yogesh Mani Tripathi, 2020. "Determination of Bayesian optimal warranty length under Type-II unified hybrid censoring scheme," Papers 2004.08533, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    2. Saieed F. Ateya & Abdulaziz S. Alghamdi & Abd Allah A. Mousa, 2022. "Future Failure Time Prediction Based on a Unified Hybrid Censoring Scheme for the Burr-X Model with Engineering Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    3. Ritwik Bhattacharya & Baidya Nath Saha & Graceila González Farías & Narayanaswamy Balakrishnan, 2020. "Multi-criteria-based optimal life-testing plans under hybrid censoring scheme," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 430-453, June.
    4. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    5. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    6. Mohammad Vali Ahmadi & Jafar Ahmadi & Mousa Abdi, 2019. "Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 251-275, April.
    7. Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2018. "Optimum Life Test Plans in Presence of Type-I Hybrid Censoring for Products Sold under General Rebate Warranty," Working papers 280, Indian Institute of Management Kozhikode.
    8. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    9. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    10. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    11. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    12. Tanmay Sen & Ritwik Bhattacharya & Biswabrata Pradhan & Yogesh Mani Tripathi, 2020. "Determination of Bayesian optimal warranty length under Type-II unified hybrid censoring scheme," Papers 2004.08533, arXiv.org.
    13. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    14. Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
    15. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    16. Zhiao Zhao & Yong Zhang & Guanjun Liu & Jing Qiu, 2019. "Sample selection of prognostics validation test based on multi-stage Wiener process," Journal of Risk and Reliability, , vol. 233(4), pages 605-614, August.
    17. Balakrishnan, N. & Rasouli, Abbas, 2008. "Exact likelihood inference for two exponential populations under joint Type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2725-2738, January.
    18. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    19. Ritwik Bhattacharya & Biswabrata Pradhan, 2017. "Computation of optimum Type-II progressively hybrid censoring schemes using variable neighborhood search algorithm," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 802-821, December.
    20. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iik:wpaper:302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sudheesh Kumar (email available below). General contact details of provider: https://edirc.repec.org/data/iikmmin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.