IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4090-d961484.html
   My bibliography  Save this article

A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme

Author

Listed:
  • Tzong-Ru Tsai

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

  • Jyun-You Chiang

    (School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China)

  • Yi-Jia Huang

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan)

Abstract

A new life performance index is proposed for evaluating the quality of lifetime products. The maximum likelihood estimation method and the Bayesian approaches using informative and non-informative prior distributions are utilized to infer the parameters of the Weibull distribution and the proposed new life performance index under a Type-I hybrid censoring scheme. Monte Carlo simulation results show that two Bayesian approaches outperform the maximum likelihood estimation method in terms of the measures of relative bias, relative mean square error, and coverage probability for the point and confidence interval estimators, respectively. The Bayesian approach using a non-informative prior distribution is recommended if the knowledge of setting up the hyper-parameters in the informative prior distribution is not available. Two real data sets are provided for illustration.

Suggested Citation

  • Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4090-:d:961484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    2. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    3. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    4. Balakrishnan, N. & Kateri, M., 2008. "On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2971-2975, December.
    5. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.
    6. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    7. Wang, Yanhua & He, Shuyuan, 2005. "Fisher information in censored data," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 199-206, June.
    8. Lin, Chien-Tai & Chou, Cheng-Chieh & Huang, Yen-Lung, 2012. "Inference for the Weibull distribution with progressive hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 451-467.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    2. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    3. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    4. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    5. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    6. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    7. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    8. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    9. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    10. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    11. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    12. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    13. Kantar, Yeliz Mert & Usta, Ilhan & Arik, Ibrahim & Yenilmez, Ismail, 2018. "Wind speed analysis using the Extended Generalized Lindley Distribution," Renewable Energy, Elsevier, vol. 118(C), pages 1024-1030.
    14. E.I., Abdul Sathar & K.V., Viswakala, 2019. "Non-parametric estimation of Kullback–Leibler discrimination information based on censored data," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    15. Rama Shanker & Kamlesh Kumar Shukla, 2017. "Zero-Truncated Poisson-Garima Distribution and its Applications," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(1), pages 14-19, September.
    16. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    17. Ghitany, M.E. & Alqallaf, F. & Al-Mutairi, D.K. & Husain, H.A., 2011. "A two-parameter weighted Lindley distribution and its applications to survival data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(6), pages 1190-1201.
    18. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    19. Iman Makhdoom & Parviz Nasiri & Abbas Pak, 2016. "Bayesian approach for the reliability parameter of power Lindley distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 341-355, September.
    20. Shikhar Tyagi & Arvind Pandey & Christophe Chesneau, 2022. "Weighted Lindley Shared Regression Model for Bivariate Left Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 655-682, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4090-:d:961484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.