IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v81y2019i2d10.1007_s13571-018-0167-0.html
   My bibliography  Save this article

A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution

Author

Listed:
  • Deepak Prajapati

    (Indian Institute of Technology Kanpur)

  • Sharmistha Mitra

    (Indian Institute of Technology Kanpur)

  • Debasis Kundu

    (Indian Institute of Technology Kanpur)

Abstract

The study proposes a new decision theoretic sampling plan (DSP) for Type-I and Type-I hybrid censored samples when the lifetimes of individual items are exponentially distributed with a scale parameter. The DSP is based on an estimator of the scale parameter which always exists, unlike the MLE which may not always exist. Using a quadratic loss function and a decision function based on the proposed estimator, a DSP is derived. To obtain the optimum DSP, a finite algorithm is used. Numerical results demonstrate that in terms of the Bayes risk, the optimum DSP is as good as the Bayesian sampling plan (BSP) proposed by Lin et al. (2002) and Liang and Yang (2013). The proposed DSP performs better than the sampling plan of Lam (1994) and Lin et al. (2008a) in terms of Bayes risks. The main advantage of the proposed DSP is that for higher degree polynomial and non-polynomial loss functions, it can be easily obtained as compared to the BSP.

Suggested Citation

  • Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
  • Handle: RePEc:spr:sankhb:v:81:y:2019:i:2:d:10.1007_s13571-018-0167-0
    DOI: 10.1007/s13571-018-0167-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-018-0167-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-018-0167-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wen-Tao & Lin, Yu-Pin, 2004. "Bayesian sampling plans for exponential distribution based on uniform random censored data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 669-691, January.
    2. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    3. Yu-Pin Lin & TaChen Liang & Wen-Tao Huang, 2002. "Bayesian Sampling Plans for Exponential Distribution Based on Type I Censoring Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 100-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Prajapati & Shuvashree Mondal & Debasis Kundu, 2024. "Two sample Bayesian acceptance sampling plan," Annals of Operations Research, Springer, vol. 340(1), pages 425-449, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiran Prajapat & Arnab Koley & Sharmishtha Mitra & Debasis Kundu, 2023. "An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 512-539, February.
    2. Deepak Prajapati & Shuvashree Mondal & Debasis Kundu, 2024. "Two sample Bayesian acceptance sampling plan," Annals of Operations Research, Springer, vol. 340(1), pages 425-449, September.
    3. Lee‐Shen Chen & Ming‐Chung Yang & TaChen Liang, 2015. "Bayesian sampling plans for exponential distributions with interval censored samples," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 604-616, October.
    4. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    5. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    6. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    7. Mohammad Vali Ahmadi & Jafar Ahmadi & Mousa Abdi, 2019. "Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 251-275, April.
    8. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    9. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    10. Carlos Pérez-González & Arturo Fernández, 2013. "Classical versus Bayesian risks in acceptance sampling: a sensitivity analysis," Computational Statistics, Springer, vol. 28(3), pages 1333-1350, June.
    11. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    12. Liang, Tachen & Huang, Wen-Tao & Yang, Kun-Cheng, 2008. "Locally optimal tests for exponential distributions with type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3603-3615, March.
    13. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    14. Zeng, Jing & Wang, Zhenjun & Chen, Guobin, 2021. "Biological characteristics of energy conversion in carbon fixation by microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    16. Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2019. "Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes," Working papers 302, Indian Institute of Management Kozhikode.
    17. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    18. Balakrishnan, N. & Rasouli, Abbas, 2008. "Exact likelihood inference for two exponential populations under joint Type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2725-2738, January.
    19. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    20. Chen, Jianwei & Li, Kim-Hung & Lam, Yeh, 2007. "Bayesian single and double variable sampling plans for the Weibull distribution with censoring," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1062-1073, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:2:d:10.1007_s13571-018-0167-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.