IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p792-d1601504.html
   My bibliography  Save this article

Bayesian Estimation of the Stress–Strength Parameter for Bivariate Normal Distribution Under an Updated Type-II Hybrid Censoring

Author

Listed:
  • Yu-Jau Lin

    (Department of Applied Mathematics, Chung Yuan Christian University, Zhongli District, Taoyuan City 320314, Taiwan
    These authors contributed equally to this work.)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA
    These authors contributed equally to this work.)

  • Tzong-Ru Tsai

    (Department of Statistics, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan
    These authors contributed equally to this work.)

Abstract

To save time and cost for a parameter inference, the type-II hybrid censoring scheme has been broadly applied to collect one-component samples. In the current study, one of the essential parameters for comparing two distributions, that is, the stress–strength probability δ = Pr ( X < Y ) , is investigated under a new proposed type-II hybrid censoring scheme that generates the type-II hybrid censored two-component sample from the bivariate normal distribution. The difficult issues occurred from extending the one-component type-II hybrid censored sample to a two-component type-II hybrid censored sample are keeping useful information from both components and the establishment of the corresponding likelihood function. To conquer these two drawbacks, the proposed type-II hybrid censoring scheme is addressed as follows. The observed values of the first component, X, of data pairs ( X , Y ) are recorded up to a random time τ = max { X r : n , T } , where X r : n is the rth ordered statistic among n items with r < n as two pre-specified positive integers and T is a pre-determined experimental time. The observed value from the other component variable Y is recorded only if it is the counterpart of X and also observed before time τ ; otherwise, it is denoted as occurred or not at τ . Under the new proposed scheme, the likelihood function of the new bivariate censored data is derived to include the factors of double improper integrals to cover all possible cases without the loss of data information where any component is unobserved. A Monte Carlo Markov chain (MCMC) method is applied to find the Bayesian estimate of the bivariate distribution model parameters and the stress–strength probability, δ . An extensive simulation study is conducted to demonstrate the performance of the developed methods. Finally, the proposed methodologies are applied to a type-II hybrid censored sample generated from a bivariate normal distribution.

Suggested Citation

  • Yu-Jau Lin & Yuhlong Lio & Tzong-Ru Tsai, 2025. "Bayesian Estimation of the Stress–Strength Parameter for Bivariate Normal Distribution Under an Updated Type-II Hybrid Censoring," Mathematics, MDPI, vol. 13(5), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:792-:d:1601504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    2. Chansoo Kim & Younshik Chung, 2006. "Bayesian estimation of P (Y>X) from Burr-type X model containing spurious observations," Statistical Papers, Springer, vol. 47(4), pages 643-651, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saieed F. Ateya & Abdulaziz S. Alghamdi & Abd Allah A. Mousa, 2022. "Future Failure Time Prediction Based on a Unified Hybrid Censoring Scheme for the Burr-X Model with Engineering Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    2. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    3. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    4. Mohammad Vali Ahmadi & Jafar Ahmadi & Mousa Abdi, 2019. "Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 251-275, April.
    5. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    6. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    7. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    8. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    9. Jessie Marie Byrnes & Yu-Jau Lin & Tzong-Ru Tsai & Yuhlong Lio, 2019. "Bayesian Inference of ? = P ( X < Y ) for Burr Type XII Distribution Based on Progressively First Failure-Censored Samples," Mathematics, MDPI, vol. 7(9), pages 1-24, September.
    10. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    11. Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
    12. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    13. Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2019. "Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes," Working papers 302, Indian Institute of Management Kozhikode.
    14. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    15. Balakrishnan, N. & Rasouli, Abbas, 2008. "Exact likelihood inference for two exponential populations under joint Type-II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2725-2738, January.
    16. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    17. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    18. Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
    19. N. Balakrishnan & Qihao Xie & D. Kundu, 2009. "Exact inference for a simple step-stress model from the exponential distribution under time constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 251-274, March.
    20. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:792-:d:1601504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.