Exact likelihood inference for two exponential populations under joint Type-II censoring
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rajni Goel & Hare Krishna, 2022. "Statistical inference for two Lindley populations under balanced joint progressive type-II censoring scheme," Computational Statistics, Springer, vol. 37(1), pages 263-286, March.
- Parsi, Safar & Bairamov, Ismihan, 2009. "Expected values of the number of failures for two populations under joint Type-II progressive censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3560-3570, August.
- Chunmei Zhang & Tao Cong & Wenhao Gui, 2023. "Order-Restricted Inference for Generalized Inverted Exponential Distribution under Balanced Joint Progressive Type-II Censored Data and Its Application on the Breaking Strength of Jute Fibers," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
- Leijia Ding & Wenhao Gui, 2023. "Statistical Inference of Two Gamma Distributions under the Joint Type-II Censoring Scheme," Mathematics, MDPI, vol. 11(9), pages 1-23, April.
- Yahia Abdel-Aty & Mohamed Kayid & Ghadah Alomani, 2023. "Generalized Bayes Estimation Based on a Joint Type-II Censored Sample from K-Exponential Populations," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
- Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
- Deepak Prajapati & Sharmistha Mitra & Debasis Kundu, 2019. "A New Decision Theoretic Sampling Plan for Type-I and Type-I Hybrid Censored Samples from the Exponential Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 251-288, December.
- Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
- Jimut Bahan Chakrabarty & Shovan Chowdhury & Soumya Roy, 2019. "Optimum life test plan for products sold under warranty having Type-I generalizedhybrid censored Weibull distributed lifetimes," Working papers 302, Indian Institute of Management Kozhikode.
- B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
- Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
- Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
- Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
- Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
- Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
- Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
- Debashis Samanta & Debasis Kundu & Ayon Ganguly, 2018. "Order Restricted Bayesian Analysis of a Simple Step Stress Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 195-221, November.
- Abhimanyu Singh Yadav & Emrah Altun & Haitham M. Yousof, 2021. "Burr–Hatke Exponential Distribution: A Decreasing Failure Rate Model, Statistical Inference and Applications," Annals of Data Science, Springer, vol. 8(2), pages 241-260, June.
- O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
- Kiran Prajapat & Arnab Koley & Sharmishtha Mitra & Debasis Kundu, 2023. "An Optimal Bayesian Sampling Plan for Two-Parameter Exponential Distribution Under Type-I Hybrid Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 512-539, February.
- Debasis Kundu & Rameshwar Gupta, 2007. "Analysis of Hybrid Life-tests in Presence of Competing Risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 159-170, February.
- Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
- Iliopoulos, G. & Balakrishnan, N., 2009. "Conditional independence of blocked ordered data," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1008-1015, April.
- Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:5:p:2725-2738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.