IDEAS home Printed from https://ideas.repec.org/p/hhs/osloec/2004_003.html
   My bibliography  Save this paper

Exact Small Sample Properties of the Instrumental Variable Estimator. A View From a Different Angle

Author

Listed:

Abstract

I derive the exact small sample properties of the instrumental variables estimator using a trigonometric approach. The distribution for the estimation error is decomposed into a product of three components - each with an intuitive interpretation. This approach helps the discussion on what underlies the exact shape of the estimator’s distribution and in particular the possibility of a bimodal distribution.

Suggested Citation

  • Mehlum, Halvor, 2004. "Exact Small Sample Properties of the Instrumental Variable Estimator. A View From a Different Angle," Memorandum 03/2004, Oslo University, Department of Economics.
  • Handle: RePEc:hhs:osloec:2004_003
    as

    Download full text from publisher

    File URL: http://www.sv.uio.no/econ/english/research/unpublished-works/working-papers/pdf-files/2004/Memo-03-2004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    2. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    3. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    2. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    3. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    4. James H. Stock & Jonathan Wright, 1996. "Asymptotics for GMM Estimators with Weak Instruments," NBER Technical Working Papers 0198, National Bureau of Economic Research, Inc.
    5. Forchini, Giovanni, 2007. "The exact distribution of the TSLS estimator for a non-Gaussian just-identified linear structural equation," Economics Letters, Elsevier, vol. 95(1), pages 117-123, April.
    6. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    7. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    8. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    9. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    10. Jan F. Kiviet & Jerzy Niemczyk, 2014. "On the Limiting and Empirical Distributions of IV Estimators When Some of the Instruments are Actually Endogenous," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 425-490, Emerald Group Publishing Limited.
    11. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    12. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    13. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    14. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    15. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    16. Halvor Mehlum, 2009. "On the Geometry of the Instrumental Variable Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 427-435, June.
    17. Tao Chen & Gautam Tripathi, 2013. "Testing conditional symmetry without smoothing," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 273-313, June.
    18. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    19. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    20. Mittelhammer, Ronald C. & Judge, George G. & Schoenberg, Ron, 2003. "Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods," CUDARE Working Papers 25090, University of California, Berkeley, Department of Agricultural and Resource Economics.

    More about this item

    Keywords

    Instrument; variable; estimator;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:osloec:2004_003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mari Strønstad Øverås (email available below). General contact details of provider: https://edirc.repec.org/data/souiono.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.