IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v71y2009i3p427-435.html
   My bibliography  Save this article

On the Geometry of the Instrumental Variable Estimator

Author

Listed:
  • Halvor Mehlum

Abstract

I derive the exact distribution of the exact determined instrumental variable estimator using a geometric approach. The approach provides a decomposition of the exact estimator. The results show that by geometric reasoning one may efficiently derive the distribution of the estimation error. The often striking non‐normal shape of the instrumental variable estimator, in the case of weak instruments and small samples, follows intuitively by the geometry of the problem. The method allows for intuitive interpretations of how the shape of the distribution is determined by instrument quality and endogeneity. The approach can also be used when deriving the exact distribution of any ratio of stochastic variables.

Suggested Citation

  • Halvor Mehlum, 2009. "On the Geometry of the Instrumental Variable Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 427-435, June.
  • Handle: RePEc:bla:obuest:v:71:y:2009:i:3:p:427-435
    DOI: 10.1111/j.1468-0084.2009.00552.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0084.2009.00552.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0084.2009.00552.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    2. Woglom, Geoffrey, 2001. "More Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 69(5), pages 1381-1389, September.
    3. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    2. Forchini, G., 2006. "On The Bimodality Of The Exact Distribution Of The Tsls Estimator," Econometric Theory, Cambridge University Press, vol. 22(5), pages 932-946, October.
    3. Simon A. Broda & Raymond Kan, 2016. "On distributions of ratios," Biometrika, Biometrika Trust, vol. 103(1), pages 205-218.
    4. Forchini, Giovanni, 2007. "The exact distribution of the TSLS estimator for a non-Gaussian just-identified linear structural equation," Economics Letters, Elsevier, vol. 95(1), pages 117-123, April.
    5. Mehlum, Halvor, 2004. "Exact Small Sample Properties of the Instrumental Variable Estimator. A View From a Different Angle," Memorandum 03/2004, Oslo University, Department of Economics.
    6. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    7. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    8. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    9. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    10. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    11. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    12. Tao Chen & Gautam Tripathi, 2013. "Testing conditional symmetry without smoothing," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 273-313, June.
    13. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    14. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    15. Mittelhammer, Ron C & Judge, George G. & Schoenberg, Ron, 2003. "Empirical Evidence Concerning the Finite Sample Performance of EL-Type Structural Equation Estimation and Inference Methods," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2xm0n02g, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Eric JONDEAU & Herve LE BIHAN, 2003. "ML vs GMM Estimates of Hybrid Macroeconomic Models (With an Application to the "New Phillips Curve")," Econometrics 0303006, University Library of Munich, Germany.
    17. Chamberlain, Gary & Imbens, Guido, 1996. "Hierarchical Bayes Models with Many Instrumental Variables," Scholarly Articles 3221489, Harvard University Department of Economics.
    18. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    19. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    20. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:71:y:2009:i:3:p:427-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.