IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9812002.html
   My bibliography  Save this paper

Bayesian and Classical Approaches to Instrumental Variables Regression

Author

Listed:
  • Frank Kleibergen

    (Erasmus University Rotterdam)

  • Eric Zivot

    (University of Washington)

Abstract

We estabilsh the relationships between certain Bayesian and classical approaches to instrumental variables regression. We determine the form of priors that lead to posteriors for structural paameters that have similar properties as classical 2SLS and LIML and in doing so provide some new insight to the small sample behavior of Bayesian and classical procedures in the limited information simultaneous equations model. Our approach is motivated by the relationship between Bayesian and classical procedures in linear regression models: i.e., Bayesian analysis with a diffuse prior leads to posteriors that are identical in form to the finite sample density of classical least squares estimators. We use the fact that the instrumental variables regression model can be obtained from a reduced rank restriction on a multivariate linear model to determine the priors that give rise to posteriors that have properties similar to classical 2SLS and LIML. As a by-product of this approach we provide a novel way to dtermine the exact finite sample density of the LIML estimator and theprior that corresponds with classical LIML. We show that the traditional Dreze (1976) and a new Bayesian Two Stage approach are similar to 2SLS whereas the approach based on the Jeffreys' prior corresponds to LIML.

Suggested Citation

  • Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variables Regression," Econometrics 9812002, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:9812002
    Note: Type of Document - Adobe Acrobat (.pdf); prepared on IBM PC ; to print on PostScript; pages: 38; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9812/9812002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    2. Dreze, Jacques H, 1976. "Bayesian Limited Information Analysis of the Simultaneous Equations Model," Econometrica, Econometric Society, vol. 44(5), pages 1045-1075, September.
    3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    4. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    5. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    6. Diebold, Francis X. & Lamb, Russell L., 1997. "Why are estimates of agricultural supply response so variable?," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 357-373.
    7. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    8. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    9. Zellner, Arnold & Bauwens, Luc & Van Dijk, Herman K., 1988. "Bayesian specification analysis and estimation of simultaneous equation models using Monte Carlo methods," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 39-72.
    10. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    11. Zellner, Arnold, 1988. "Bayesian analysis in econometrics," Journal of Econometrics, Elsevier, vol. 37(1), pages 27-50, January.
    12. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.
    13. Arnold Zellner, 1997. "Bayesian Analysis in Econometrics and Statistics," Books, Edward Elgar Publishing, number 825.
    14. Sawa, Takamitsu, 1973. "The mean square error of a combined estimator and numerical comparison with the TSLS estimator," Journal of Econometrics, Elsevier, vol. 1(2), pages 115-132, June.
    15. Zellner, Arnold & Tobias, Justin, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 121-140, February.
    16. Anderson, T. W. & Kunitomo, Naoto & Morimune, Kimio, 1986. "Comparing Single-Equation Estimators in a Simultaneous Equation System," Econometric Theory, Cambridge University Press, vol. 2(1), pages 1-32, April.
    17. Forchini, Giovanni & Hillier, Grant, 2003. "Conditional Inference For Possibly Unidentified Structural Equations," Econometric Theory, Cambridge University Press, vol. 19(05), pages 707-743, October.
    18. Park, Soo-Bin, 1982. "Some sampling properties of minimum expected loss (MELO) estimators of structural coefficients," Journal of Econometrics, Elsevier, vol. 18(3), pages 295-311, April.
    19. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    20. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    21. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    22. Zellner, Arnold, 1978. "Estimation of functions of population means and regression coefficients including structural coefficients : A minimum expected loss (MELO) approach," Journal of Econometrics, Elsevier, vol. 8(2), pages 127-158, October.
    23. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    24. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    25. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    26. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
    27. Anderson, T W & Sawa, Takamitsu, 1979. "Evaluation of the Distribution Function of the Two-Stage Least Squares Estimate," Econometrica, Econometric Society, vol. 47(1), pages 163-182, January.
    28. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    29. Dreze, Jacques H., 1977. "Bayesian regression analysis using poly-t densities," Journal of Econometrics, Elsevier, vol. 6(3), pages 329-354, November.
    30. Frank R. Kleibergen, 2000. "Exact Test Statistics and Distributions of Maximum Likelihood Estimators that result from Orthogonal Parameters," Tinbergen Institute Discussion Papers 00-039/4, Tinbergen Institute.
    31. Anderson, T W, 1977. "Asymptotic Expansions of the Distributions of Estimates in Simultaneous Equations for Alternative Parameter Sequences," Econometrica, Econometric Society, vol. 45(2), pages 509-518, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    2. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    4. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    5. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    6. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    7. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    8. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    9. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    10. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    11. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    12. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.
    13. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    14. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    15. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    16. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    17. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    18. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    19. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.
    20. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.

    More about this item

    Keywords

    Bayesian; diffuse prior; instrumental variables; Jeffreys prior; limited information maximum likelihood; reduced rank; two stage least squares;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9812002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.