IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2022_011.html
   My bibliography  Save this paper

Do Recessions Occur Concurrently Across Countries? A Multinomial Logistic Approach

Author

Listed:

Abstract

We develop a novel multinomial logistic model to detect and forecast concurrent recessions across multi-countries. The key advantage of our proposed framework is that we can detect recessions across countries using the additional informational content from the cross-country panel feature of the data. Furthermore, in a simulation study, we show that our proposed model accurately captures the true underlying probabilities. Finally, we apply our proposed framework to a US and UK empirical application. In terms of recession forecastability, the multinomial logistic model with both countries’ interest rate spread and the weekly US NFCI as the set of exogenous predictors was the best performing model. For the counterfactual analysis, we found that a previous US recession will increase the probability of a recession occurring jointly in the US and the UK. However, a tightening of the US NFCI and a negative interest rate spread in both countries only increases the probability of a recession exclusively in the US and UK, respectively.

Suggested Citation

  • Poon, Aubrey & Zhu, Dan, 2022. "Do Recessions Occur Concurrently Across Countries? A Multinomial Logistic Approach," Working Papers 2022:11, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2022_011
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2022/wp-11-2022.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
    3. Joseph G. Haubrich, 2006. "Does the yield curve signal recession?," Economic Commentary, Federal Reserve Bank of Cleveland, issue Apr.
    4. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    5. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    6. Bhattarai, Saroj & Chatterjee, Arpita & Park, Woong Yong, 2020. "Global spillover effects of US uncertainty," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 71-89.
    7. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    8. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    9. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    10. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, February.
    11. Kose,Ayhan & Lakatos,Csilla & Ohnsorge,Franziska Lieselotte & Stocker,Marc, 2017. "The global role of the U.S. economy: linkages, policies and spillovers," Policy Research Working Paper Series 7962, The World Bank.
    12. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, February.
    13. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    14. Bagliano, Fabio C. & Morana, Claudio, 2012. "The Great Recession: US dynamics and spillovers to the world economy," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 1-13.
    15. Fadejeva, Ludmila & Feldkircher, Martin & Reininger, Thomas, 2017. "International spillovers from Euro area and US credit and demand shocks: A focus on emerging Europe," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 1-25.
    16. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    2. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-errors-adjusted Sahm Rule for Early Identification of Economic Recession," GLO Discussion Paper Series 523, Global Labor Organization (GLO).
    3. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    4. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    5. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," IZA Discussion Papers 13168, Institute of Labor Economics (IZA).
    6. Shuaizhang Feng & Jiandong Sun, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," Working Papers 2020-029, Human Capital and Economic Opportunity Working Group.
    7. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    8. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    9. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    10. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    11. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    12. Donato Ceci & Andrea Silvestrini, 2023. "Nowcasting the state of the Italian economy: The role of financial markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1569-1593, November.
    13. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    14. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    15. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    16. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    17. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    18. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    19. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    20. Christiansen, Charlotte, 2013. "Predicting severe simultaneous recessions using yield spreads as leading indicators," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.

    More about this item

    Keywords

    Recession prediction; multinomial logistic; cross-country; mixed frequency; Bayesian estimation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2022_011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.