IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02090807.html
   My bibliography  Save this paper

From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models

Author

Listed:
  • Pierre Henry-Labordere

    (SOCIETE GENERALE - Equity Derivatives Research Societe Generale - Société Générale)

Abstract

Following closely the construction of the Schrodinger bridge, we build a new class of Stochastic Volatility Models exactly calibrated to market instruments such as for example Vanillas, options on realized variance or VIX options. These models differ strongly from the well-known local stochastic volatility models, in particular the instantaneous volatility-of-volatility of the associated naked SVMs is not modified, once calibrated to market instruments. They can be interpreted as a martingale version of the Schrodinger bridge. The numerical calibration is performed using a dynamic-like version of the Sinkhorn algorithm. We finally highlight a striking relation with Dyson non-colliding Brownian motions.

Suggested Citation

  • Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Working Papers hal-02090807, HAL.
  • Handle: RePEc:hal:wpaper:hal-02090807
    Note: View the original document on HAL open archive server: https://hal.science/hal-02090807
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02090807/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Avellaneda, 1998. "Minimum-Relative-Entropy Calibration of Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 447-472.
    2. Baudoin, Fabrice, 0. "Conditioned stochastic differential equations: theory, examples and application to finance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 109-145, July.
    3. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 91-119.
    4. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 9, pages 239-265, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Hamdouche & Pierre Henry-Labordere & Huyên Pham, 2023. "Generative modeling for time series via Schrödinger bridge," Working Papers hal-04063041, HAL.
    2. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    3. Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
    4. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Papers 1904.04554, arXiv.org.
    2. Paul Glasserman & Bin Yu, 2005. "Large Sample Properties of Weighted Monte Carlo Estimators," Operations Research, INFORMS, vol. 53(2), pages 298-312, April.
    3. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    4. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Martingale Schr\"odinger Bridges and Optimal Semistatic Portfolios," Papers 2204.12250, arXiv.org.
    5. Vinicius Albani & Adriano De Cezaro & Jorge P. Zubelli, 2017. "Convex Regularization Of Local Volatility Estimation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-37, February.
    6. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    7. Andre Catalao & Rogerio Rosenfeld, 2018. "Analytical Path-Integral Pricing of Moving-Barrier Options under non-Gaussian Distributions," Papers 1804.07852, arXiv.org.
    8. André Catalão & Rogério Rosenfeld, 2020. "Analytical Path-Integral Pricing Of Deterministic Moving-Barrier Options Under Non-Gaussian Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-52, February.
    9. Hadrien De March & Pierre Henry-Labordere, 2019. "Building arbitrage-free implied volatility: Sinkhorn's algorithm and variants," Papers 1902.04456, arXiv.org, revised Jul 2023.
    10. Davide Lauria & W. Brent Lindquist & Stefan Mittnik & Svetlozar T. Rachev, 2022. "ESG-Valued Portfolio Optimization and Dynamic Asset Pricing," Papers 2206.02854, arXiv.org.
    11. Rama Cont, 2023. "In memoriam: Marco Avellaneda (1955–2022)," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 3-15, January.
    12. S'andor Kuns'agi-M'at'e & G'abor F'ath & Istv'an Csabai & G'abor Moln'ar-S'aska, 2022. "Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks," Papers 2208.14038, arXiv.org, revised Dec 2022.
    13. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    14. Jim Gatheral, 2023. "Marco Avellaneda: Mathematician and trader," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 16-18, January.
    15. Hadrien de March & Pierre Henry-Labordere, 2019. "Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants," Working Papers hal-02011533, HAL.
    16. Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
    17. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    18. Davide Lauria & Wyatt D. Phillips, 2021. "Insuring Hollywood: A Movie Returns Index and the American Stock Market," JRFM, MDPI, vol. 14(5), pages 1-33, April.
    19. Anastasis Kratsios, 2017. "Optimal Stochastic Decensoring and Applications to Calibration of Market Models," Papers 1712.04844, arXiv.org, revised Dec 2017.
    20. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.

    More about this item

    Keywords

    Sinkhorn algorithm; conditioned SDEs; stochastic volatility model; stochastic control; Schrodinger bridge;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02090807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.