IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02011533.html
   My bibliography  Save this paper

Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants

Author

Listed:
  • Hadrien de March

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Pierre Henry-Labordere

    (SOCIETE GENERALE - Equity Derivatives Research Societe Generale - Société Générale)

Abstract

We consider the classical problem of building an arbitrage-free implied volatility surface from bid-ask quotes. We design a fast numerical procedure, for which we prove the convergence, based on the Sinkhorn algorithm that has been recently used to solve efficiently (martingale) optimal transport problems.

Suggested Citation

  • Hadrien de March & Pierre Henry-Labordere, 2019. "Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants," Working Papers hal-02011533, HAL.
  • Handle: RePEc:hal:wpaper:hal-02011533
    Note: View the original document on HAL open archive server: https://hal.science/hal-02011533
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02011533/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Working Papers hal-00790001, HAL.
    2. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    3. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    4. Gabriel Peyré & Marco Cuturi, 2017. "Computational Optimal Transport," Working Papers 2017-86, Center for Research in Economics and Statistics.
    5. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    6. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Papers 1302.4854, arXiv.org, revised Apr 2013.
    7. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 91-119.
    8. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    9. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 9, pages 239-265, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    2. Julien Guyon, 2020. "Inversion of convex ordering in the VIX market," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1597-1623, October.
    3. Marcel Nutz & Johannes Wiesel, 2024. "On the Martingale Schr\"odinger Bridge between Two Distributions," Papers 2401.05209, arXiv.org.
    4. Ivan Guo & Grégoire Loeper & Shiyi Wang, 2022. "Calibration of local‐stochastic volatility models by optimal transport," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 46-77, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadrien De March & Pierre Henry-Labordere, 2019. "Building arbitrage-free implied volatility: Sinkhorn's algorithm and variants," Papers 1902.04456, arXiv.org, revised Jul 2023.
    2. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    3. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    4. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    5. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    6. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    7. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    8. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    9. Vinicius Albani & Adriano De Cezaro & Jorge P. Zubelli, 2017. "Convex Regularization Of Local Volatility Estimation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-37, February.
    10. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    11. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    12. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    13. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    14. Stefan Gerhold & I. Cetin Gulum, 2016. "Consistency of option prices under bid-ask spreads," Papers 1608.05585, arXiv.org, revised Jul 2019.
    15. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    16. Andre Catalao & Rogerio Rosenfeld, 2018. "Analytical Path-Integral Pricing of Moving-Barrier Options under non-Gaussian Distributions," Papers 1804.07852, arXiv.org.
    17. repec:hal:wpaper:hal-03715921 is not listed on IDEAS
    18. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    19. Tahar Ferhati, 2020. "Robust Calibration For SVI Model Arbitrage Free," Working Papers hal-02490029, HAL.
    20. Chun Yat Yeung & Ali Hirsa, 2022. "Saddle-Point Approach to Large-Time Volatility Smile," Papers 2212.05671, arXiv.org.
    21. Paul Glasserman & Bin Yu, 2005. "Large Sample Properties of Weighted Monte Carlo Estimators," Operations Research, INFORMS, vol. 53(2), pages 298-312, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02011533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.