IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v100yi1-2p109-145.html
   My bibliography  Save this article

Conditioned stochastic differential equations: theory, examples and application to finance

Author

Listed:
  • Baudoin, Fabrice

Abstract

We generalize the notion of Brownian bridge. More precisely, we study a standard Brownian motion for which a certain functional is conditioned to follow a given law. Such processes appear as weak solutions of stochastic differential equations that we call conditioned stochastic differential equations. The link with the theory of initial enlargement of filtration is made and after a general presentation several examples are studied: the conditioning of a standard Brownian motion (and more generally of a Markov diffusion) by its value at a given date, the conditioning of a geometric Brownian motion with negative drift by its quadratic variation and finally the conditioning of a standard Brownian motion by its first hitting time of a given level. As an application, we introduce the notion of weak information on a complete market, and we give a "quantitative" value to this weak information.

Suggested Citation

  • Baudoin, Fabrice, 0. "Conditioned stochastic differential equations: theory, examples and application to finance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 109-145, July.
  • Handle: RePEc:eee:spapps:v:100:y::i:1-2:p:109-145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00109-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amendinger, Jürgen & Becherer, Dirk & Schweizer, Martin, 2000. "Quantifying the value of initial investment information," SFB 373 Discussion Papers 2000,41, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    3. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sottinen, Tommi & Yazigi, Adil, 2014. "Generalized Gaussian bridges," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3084-3105.
    2. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," DES - Working Papers. Statistics and Econometrics. WS 28805, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Alexander Schied, 2005. "Optimal Investments for Robust Utility Functionals in Complete Market Models," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 750-764, August.
    4. Schied, Alexander & Wu, Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers 2005-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
    6. Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Working Papers hal-02090807, HAL.
    7. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    8. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," Papers 1909.03430, arXiv.org, revised Dec 2019.
    9. Alili, Larbi & Wu, Ching-Tang, 2009. "Further results on some singular linear stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1386-1399, April.
    10. repec:hum:wpaper:sfb649dp2005-025 is not listed on IDEAS
    11. Luciano Campi & Matteo del Vigna, 2011. "Weak Insider Trading and Behavioral Finance," Working Papers hal-00566185, HAL.
    12. Anastasis Kratsios, 2017. "Optimal Stochastic Decensoring and Applications to Calibration of Market Models," Papers 1712.04844, arXiv.org, revised Dec 2017.
    13. Nikolas Nüsken & Lorenz Richter, 2021. "Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space," Partial Differential Equations and Applications, Springer, vol. 2(4), pages 1-48, August.
    14. Pierre Henry-Labordere, 2019. "From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models," Papers 1904.04554, arXiv.org.
    15. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 199-217, March.
    16. Hoyle, Edward & Hughston, Lane P. & Macrina, Andrea, 2011. "Lévy random bridges and the modelling of financial information," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 856-884, April.
    17. Bernardo D'Auria & Jos'e A. Salmer'on, 2021. "Anticipative information in a Brownian-Poissonmarket: the binary information," Papers 2111.01529, arXiv.org.
    18. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2021. "Anticipative information in a Brownian-Poisson market: the binary information," DES - Working Papers. Statistics and Econometrics. WS 33624, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Paolo Guasoni, 2006. "Asymmetric Information in Fads Models," Finance and Stochastics, Springer, vol. 10(2), pages 159-177, April.
    20. Geoff Lindsell, 2022. "Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Markets in Initially Enlarged Filtrations," Papers 2203.08859, arXiv.org, revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Imkeller, 2003. "Malliavin's Calculus in Insider Models: Additional Utility and Free Lunches," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 153-169, January.
    2. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    3. Beatrice Acciaio & Claudio Fontana & Constantinos Kardaras, 2014. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Papers 1401.7198, arXiv.org, revised May 2015.
    4. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    5. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    6. Peng, Xingchun & Chen, Fenge & Wang, Wenyuan, 2021. "Robust optimal investment and reinsurance for an insurer with inside information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 15-30.
    7. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    8. Dolinsky, Yan & Zouari, Jonathan, 2021. "The value of insider information for super-replication with quadratic transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 394-416.
    9. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2918-2953.
    10. repec:hum:wpaper:sfb649dp2005-030 is not listed on IDEAS
    11. Zhenyu Cui & Jun Deng, 2018. "Shortfall risk through Fenchel duality," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-14, June.
    12. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    13. Scott Robertson, 2023. "Equilibrium with Heterogeneous Information Flows," Papers 2304.01272, arXiv.org, revised Mar 2024.
    14. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    15. Amendinger, Jürgen, 2000. "Martingale representation theorems for initially enlarged filtrations," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 101-116, September.
    16. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    17. Yan Dolinsky & Jonathan Zouari, 2019. "The Value of Insider Information for Super--Replication with Quadratic Transaction Costs," Papers 1910.09855, arXiv.org, revised Sep 2020.
    18. Ashkan Nikeghbali & Eckhard Platen, 2008. "On Honest Times in Financial Modeling," Research Paper Series 229, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
    20. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    21. Geoff Lindsell, 2022. "Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Markets in Initially Enlarged Filtrations," Papers 2203.08859, arXiv.org, revised Mar 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:100:y::i:1-2:p:109-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.