IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i4d10.1007_s11009-024-10099-6.html
   My bibliography  Save this article

Pricing and Hedging Contingent Claims by Entropy Segmentation and Fenchel Duality

Author

Listed:
  • José L. Vilar-Zanón

    (Complutense University of Madrid)

  • Barbara Rogo

    (Sapienza University of Rome)

Abstract

We present a new approach to the problem of characterizing and choosing equivalent martingale pricing measures for a contingent claim, in a finite-state incomplete market. This is the entropy segmentation method achieved by means of convex programming, thanks to which we divide the claim no-arbitrage prices interval into two halves, the buyer’s and the seller’s prices at successive entropy levels. Classical buyer’s and seller’s prices arise when the entropy level approaches 0. Next, we apply Fenchel duality to these primal programs to characterize the hedging positions, unifying in the same expression the cases of super (resp. sub) replication (arising when the entropy approaches 0) and partial replication (when entropy tends to its maximal value). We finally apply linear programming to our hedging problem to find in a price slice of the dual feasible set an optimal partial replicating portfolio with minimal CVaR. We apply our methodology to a cliquet style guarantee, using Heston’s dynamic with parameters calibrated on EUROSTOXX50 index quoted prices of European calls. This way prices and hedging positions take into account the volatility risk.

Suggested Citation

  • José L. Vilar-Zanón & Barbara Rogo, 2024. "Pricing and Hedging Contingent Claims by Entropy Segmentation and Fenchel Duality," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-20, December.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10099-6
    DOI: 10.1007/s11009-024-10099-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10099-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10099-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    2. Gatzert, Nadine, 2008. "Asset management and surplus distribution strategies in life insurance: An examination with respect to risk pricing and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 839-849, April.
    3. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    4. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 91-119.
    5. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    6. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    7. Roos, Kees & Balvert, Marleen & Gorissen, Bram L. & Den Hertog, Dick, 2020. "A universal and structured way to derive dual optimization problem formulations," Other publications TiSEM 05ef7486-5fe1-46ec-8313-9, Tilburg University, School of Economics and Management.
    8. Teemu Pennanen, 2011. "Convex Duality in Stochastic Optimization and Mathematical Finance," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 340-362, May.
    9. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    10. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 9, pages 239-265, World Scientific Publishing Co. Pte. Ltd..
    11. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Christopher Bose & Rua Murray, 2014. "Maximum Entropy Estimates for Risk-Neutral Probability Measures with Non-Strictly-Convex Data," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 285-307, April.
    14. Les Gulko, 1999. "The Entropy Theory Of Stock Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 331-355.
    15. Susanne Kruse & Ulrich Nögel, 2005. "On the pricing of forward starting options in Heston’s model on stochastic volatility," Finance and Stochastics, Springer, vol. 9(2), pages 233-250, April.
    16. Alan J. King & Matti Koivu & Teemu Pennanen, 2005. "Calibrated Option Bounds," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 141-159.
    17. Luenberger, David G., 2002. "Arbitrage and universal pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1613-1628, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    2. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    3. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    5. Andre Catalao & Rogerio Rosenfeld, 2018. "Analytical Path-Integral Pricing of Moving-Barrier Options under non-Gaussian Distributions," Papers 1804.07852, arXiv.org.
    6. André Catalão & Rogério Rosenfeld, 2020. "Analytical Path-Integral Pricing Of Deterministic Moving-Barrier Options Under Non-Gaussian Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-52, February.
    7. Yanchu Liu & Chen Liu & Yiyao Chen & Xianming Sun, 2024. "Option‐Implied Ambiguity and Equity Return Predictability," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1556-1577, September.
    8. Paul McCloud, 2020. "Expectation and Price in Incomplete Markets," Papers 2006.16703, arXiv.org.
    9. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    10. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Martingale Schr\"odinger Bridges and Optimal Semistatic Portfolios," Papers 2204.12250, arXiv.org.
    11. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    12. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    13. S'andor Kuns'agi-M'at'e & G'abor F'ath & Istv'an Csabai & G'abor Moln'ar-S'aska, 2022. "Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks," Papers 2208.14038, arXiv.org, revised Dec 2022.
    14. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    15. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    16. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    17. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    18. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    19. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    20. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10099-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.