IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01281425.html
   My bibliography  Save this paper

Sharing the road: the economics of autonomous vehicles

Author

Listed:
  • Raphaël Lamotte

    (Urban Transport Systems Laboratory - EPFL - Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering - EPFL - Ecole Polytechnique Fédérale de Lausanne)

  • André de Palma

    (ENS Cachan - École normale supérieure - Cachan)

  • Nikolas Geroliminis

    (School of Architecture, Civil and Environmental Engineering - EPFL - Ecole Polytechnique Fédérale de Lausanne, Urban Transport Systems Laboratory - EPFL - Ecole Polytechnique Fédérale de Lausanne)

Abstract

Automated cars are likely to change mobility substantially in the coming years. Much research is developed in engineering, about legal and behavioral issues, but the economics of autonomous vehicle remains an open area. In this paper, we consider a single-bottleneck situation, in which the capacity of the freeway is divided between conventional and autonomous vehicles. Users of conventional vehicles freely choose their departure time from home, while users of autonomous vehicles collaborate with a central operator that ensures they do not queue. An individual-specific cooperation cost is integrated in the modeling framework. We address the following key issues: how should infrastructure be allocated to conventional and automated cars? Are there synergies between the two fleets of vehicle? How should each infrastructure be tolled? Should the government be a toll leader? Which regulations are needed?

Suggested Citation

  • Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
  • Handle: RePEc:hal:wpaper:hal-01281425
    Note: View the original document on HAL open archive server: https://hal.science/hal-01281425
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01281425/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tisato, Peter, 1992. "User cost minimisation and transport subsidy," Economics Letters, Elsevier, vol. 39(2), pages 241-247, June.
    2. Anderson, Simon P. & de Palma, Andre & Thisse, Jacques-Francois, 1997. "Privatization and efficiency in a differentiated industry," European Economic Review, Elsevier, vol. 41(9), pages 1635-1654, December.
    3. Björn Hårsman & John M. Quigley, 2010. "Political and public acceptability of congestion pricing: Ideology and self-interest," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 854-874.
    4. Börjesson, Maria & Eliasson, Jonas & Hugosson, Muriel & Brundell-Freij, Karin, 2012. "The Stockholm congestion charges – five years on. Effects, acceptability and lessons learnt," Working papers in Transport Economics 2012:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    5. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    6. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    7. Verhoef, Erik T., 2002. "Second-best congestion pricing in general static transportation networks with elastic demands," Regional Science and Urban Economics, Elsevier, vol. 32(3), pages 281-310, May.
    8. Faggio, Giulia & Silva, Olmo, 2014. "Self-employment and entrepreneurship in urban and rural labour markets," Journal of Urban Economics, Elsevier, vol. 84(C), pages 67-85.
    9. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    10. William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), 2009. "Transportation and Traffic Theory 2009: Golden Jubilee," Springer Books, Springer, number 978-1-4419-0820-9, January.
    11. Fosgerau, Mogens, 2009. "The marginal social cost of headway for a scheduled service," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 813-820, September.
    12. Verhoef, Erik T., 2007. "Second-best road pricing through highway franchising," Journal of Urban Economics, Elsevier, vol. 62(2), pages 337-361, September.
    13. Itf, 2015. "Automated and Autonomous Driving: Regulation under Uncertainty," International Transport Forum Policy Papers 7, OECD Publishing.
    14. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    15. Eichler, Michael & Daganzo, Carlos F., 2006. "Bus lanes with intermittent priority: Strategy formulae and an evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 731-744, November.
    16. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    17. Wang, Xin & Ouyang, Yanfeng, 2013. "A continuum approximation approach to competitive facility location design under facility disruption risks," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 90-103.
    18. Börjesson, Maria & Eliasson, Jonas & Hugosson, Muriel B. & Brundell-Freij, Karin, 2012. "The Stockholm congestion charges—5 years on. Effects, acceptability and lessons learnt," Transport Policy, Elsevier, vol. 20(C), pages 1-12.
    19. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    20. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    21. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    22. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    23. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    24. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    25. Xiao, Feng & Yang, Hai & Han, Deren, 2007. "Competition and efficiency of private toll roads," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 292-308, March.
    26. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2014. "Game-theoretical models for competition analysis in a new emerging liner container shipping market," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 201-227.
    27. van den Berg, Vincent A.C. & Verhoef, Erik T., 2012. "Is the travel time of private roads too short, too long, or just right?," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 971-983.
    28. Papageorgiou, Markos, 1990. "Dynamic modeling, assignment, and route guidance in traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 471-495, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boffa, Federico & Fedele, Alessandro & Iozzi, Alberto, 2023. "Congestion and incentives in the age of driverless fleets," Journal of Urban Economics, Elsevier, vol. 137(C).
    2. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    2. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    3. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    4. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    5. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    6. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    7. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    8. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    9. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    10. Button, Kenneth, 2004. "1. The Rationale For Road Pricing: Standard Theory And Latest Advances," Research in Transportation Economics, Elsevier, vol. 9(1), pages 3-25, January.
    11. Fosgerau, Mogens & Small, Kenneth A., 2013. "Hypercongestion in downtown metropolis," Journal of Urban Economics, Elsevier, vol. 76(C), pages 122-134.
    12. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    13. Gonzales, Eric J., 2016. "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategyAuthor-Name: Amirgholy, Mahyar," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 234-252.
    14. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    15. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    16. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    17. André de Palma & Mogens Fosgerau, 2010. "Dynamic and Static congestion models: A review," Working Papers hal-00539166, HAL.
    18. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    19. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    20. Robin Lindsey & André de Palma, 1997. "Private Toll Roads: A Dynamic Equilibrium Analysis," Tinbergen Institute Discussion Papers 97-057/3, Tinbergen Institute.

    More about this item

    Keywords

    bottleneck model; autonomous cars;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01281425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.