IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02396833.html
   My bibliography  Save this paper

Design and dimensioning of hydrogen transmission pipeline networks

Author

Listed:
  • Jean Andre

    (GDF Suez - Gaz de France Suez)

  • Stéphane Auray

    (EQUIPPE - Economie Quantitative, Intégration, Politiques Publiques et Econométrie - Université de Lille, Sciences et Technologies - Université de Lille, Sciences Humaines et Sociales - PRES Université Lille Nord de France - Université de Lille, Droit et Santé, ULCO - Université du Littoral Côte d'Opale)

  • Jean Brac

    (Institut Français du Pétrole)

  • Daniel de Wolf

    (TVES - Territoires, Villes, Environnement & Société - ULR 4477 - ULCO - Université du Littoral Côte d'Opale - Université de Lille, ULCO - Université du Littoral Côte d'Opale)

  • Guy Maisonnier

    (Institut Français du Pétrole)

  • Mohamed-Mahmoud Ould-Sidi

    (PSH - Unité de recherche Plantes et Systèmes de Culture Horticoles - INRA - Institut National de la Recherche Agronomique)

  • Antoine Simonnet

    (Total M&S [Paris La Defense] - TOTAL FINA ELF)

Abstract

This work considers the problem of the optimal design of an hydrogen transmission network. This design problem includes the topology determina tion and the pipelines dimensioning problem. We define a local search method that simultaneously looks for the least cost topology of the network and for the optimal diameter of each pipe. These two problems were generally solved separately these last years. The application to the case of development of future hydrogen pipeline networks in France has been conducted at the local, regional and national levels. We compare the proposed approach with another using Tabu search heuristic.

Suggested Citation

  • Jean Andre & Stéphane Auray & Jean Brac & Daniel de Wolf & Guy Maisonnier & Mohamed-Mahmoud Ould-Sidi & Antoine Simonnet, 2013. "Design and dimensioning of hydrogen transmission pipeline networks," Post-Print halshs-02396833, HAL.
  • Handle: RePEc:hal:journl:halshs-02396833
    DOI: 10.1016/j.ejor.2013.02.036
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02396833
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02396833/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andre, Jean & Bonnans, Frédéric & Cornibert, Laurent, 2009. "Optimization of capacity expansion planning for gas transportation networks," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1019-1027, September.
    2. Yi, Feng, 1990. "Capacity planning for a natural gas pipeline in Sweden," Energy Economics, Elsevier, vol. 12(3), pages 211-215, July.
    3. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    4. Kubat, Peter & Smith, J. MacGregor, 2001. "A multi-period network design problem for cellular telecommunication systems," European Journal of Operational Research, Elsevier, vol. 134(2), pages 439-456, October.
    5. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    6. De Wolf, D. & Smeers, Y., 1996. "Optimal dimensioning of pipe networks with application to gas transmission networks," LIDAM Reprints CORE 1249, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Daniel de Wolf & Yves Smeers, 1996. "Optimal Dimensioning of Pipe Networks with Application to Gas Transmission Networks," Operations Research, INFORMS, vol. 44(4), pages 596-608, August.
    8. Jack Brimberg & Pierre Hansen & Keh-Wei Lin & Nenad Mladenović & MichÈle Breton, 2003. "An Oil Pipeline Design Problem," Operations Research, INFORMS, vol. 51(2), pages 228-239, April.
    9. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    10. B. Rothfarb & H. Frank & D. M. Rosenbaum & K. Steiglitz & D. J. Kleitman, 1970. "Optimal Design of Offshore Natural-Gas Pipeline Systems," Operations Research, INFORMS, vol. 18(6), pages 992-1020, December.
    11. BABONNEAU, Frederic & NESTEROV, Yurii & VIAL, Jean-Philippe, 2009. "Design and operations of gas transmission networks," LIDAM Discussion Papers CORE 2009048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perrotton, Florian & Massol, Olivier, 2018. "The technology and cost structure of a natural gas pipeline: Insights for costs and rate-of-return regulation," Utilities Policy, Elsevier, vol. 53(C), pages 32-37.
    2. Jang, Jaeuk & Lee, Hyunsoo, 2024. "Effective hydrogen supply chain management framework considering nonlinear multi-stage process uncertainties," Applied Energy, Elsevier, vol. 367(C).
    3. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    4. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    5. Jean André & Stéphane Auray & Daniel de Wolf & Mohamed-Mahmoud Memmah & Antoine Simonnet, 2014. "Time development of new hydrogen transmission pipeline networks for France," Post-Print halshs-02396799, HAL.
    6. Zhou, Jun & Zhao, Yunxiang & Fu, Tiantian & Zhou, Xuan & Liang, Guangchuan, 2022. "Dimension optimization for underground natural gas storage pipeline network coupling injection and production conditions," Energy, Elsevier, vol. 256(C).
    7. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    8. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    9. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    10. Goran Durakovic & Pedro Crespo del Granado & Asgeir Tomasgard, 2022. "Powering Europe with North Sea Offshore Wind: The Impact of Hydrogen Investments on Grid Infrastructure and Power Prices," Papers 2209.10389, arXiv.org.
    11. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    12. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    13. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
    14. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    15. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    16. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    17. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices," Energy, Elsevier, vol. 263(PA).
    18. Pierre, Cayet & Catherine, Azzaro-Pantel & Sylvain, Bourjade & Catherine, Muller-Vibes, 2024. "Beyond the “bottom-up” and “top-down” controversy: A methodological inquiry into hybrid modeling methods for hydrogen supply chains," International Journal of Production Economics, Elsevier, vol. 268(C).
    19. Nadaleti, Willian Cézar & Gomes, Jeferson Peres, 2023. "Green hydrogen production from urban waste biogas: An analysis of the Brazilian potential and the process’ economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Christopher Yeates & Cornelia Schmidt-Hattenberger & Wolfgang Weinzierl & David Bruhn, 2021. "Heuristic Methods for Minimum-Cost Pipeline Network Design – a Node Valency Transfer Metaheuristic," Networks and Spatial Economics, Springer, vol. 21(4), pages 839-871, December.
    21. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    22. Mengying Xue & Tianhu Deng & Dingzhi Liu, 2016. "CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines," Interfaces, INFORMS, vol. 46(6), pages 533-546, December.
    23. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    2. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    3. Jean André & Stéphane Auray & Daniel de Wolf & Mohamed-Mahmoud Memmah & Antoine Simonnet, 2014. "Time development of new hydrogen transmission pipeline networks for France," Post-Print halshs-02396799, HAL.
    4. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    5. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    6. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    7. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    8. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    9. repec:cty:dpaper:10.1080/0013791x.2011.573615 is not listed on IDEAS
    10. Thapalia, Biju K. & Crainic, Teodor Gabriel & Kaut, Michal & Wallace, Stein W., 2012. "Single-commodity network design with random edge capacities," European Journal of Operational Research, Elsevier, vol. 220(2), pages 394-403.
    11. repec:cty:dpaper:1464 is not listed on IDEAS
    12. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    13. Zhou, Jun & Zhao, Yunxiang & Fu, Tiantian & Zhou, Xuan & Liang, Guangchuan, 2022. "Dimension optimization for underground natural gas storage pipeline network coupling injection and production conditions," Energy, Elsevier, vol. 256(C).
    14. Olivier Massol, 2011. "A Cost Function for the Natural Gas Transmission Industry: Further Considerations," The Engineering Economist, Taylor & Francis Journals, vol. 56(2), pages 95-122.
    15. Jesco Humpola & Armin Fügenschuh, 2015. "Convex reformulations for solving a nonlinear network design problem," Computational Optimization and Applications, Springer, vol. 62(3), pages 717-759, December.
    16. Christopher Yeates & Cornelia Schmidt-Hattenberger & Wolfgang Weinzierl & David Bruhn, 2021. "Heuristic Methods for Minimum-Cost Pipeline Network Design – a Node Valency Transfer Metaheuristic," Networks and Spatial Economics, Springer, vol. 21(4), pages 839-871, December.
    17. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    18. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    19. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    20. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    21. Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
    22. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02396833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.