IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v46y2016i6p533-546.html
   My bibliography  Save this article

CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines

Author

Listed:
  • Mengying Xue

    (Department of Industrial Engineering, Tsinghua University, Beijing, China 100084)

  • Tianhu Deng

    (Department of Industrial Engineering, Tsinghua University, Beijing, China 100084)

  • Dingzhi Liu

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, Beijing, China 100083)

Abstract

China National Petroleum Corporation (CNPC), the largest oil and natural gas producer and supplier in China, plans annual and monthly natural gas production quantities, consumption levels, and transmission amounts. We developed an iterative two-stage convex relaxation approach to solve this challenging task. In the first stage, we estimated the physical parameters for pipelines according to a given set of gas flows and gas pressures. In the second stage, we used these parameters to solve for a new set of gas flows and gas pressures. Through numerical tests with the current pipeline network, the proposed solution approach can converge within a two percent relative error within five minutes. The solution approach is expected to generate an extra 2.1 billion Chinese yuan (CNY) for CNPC’s natural gas usage between 2016 and 2020.

Suggested Citation

  • Mengying Xue & Tianhu Deng & Dingzhi Liu, 2016. "CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines," Interfaces, INFORMS, vol. 46(6), pages 533-546, December.
  • Handle: RePEc:inm:orinte:v:46:y:2016:i:6:p:533-546
    DOI: 10.1287/inte.2016.0867
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2016.0867
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2016.0867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. André, Jean & Auray, Stéphane & Brac, Jean & De Wolf, Daniel & Maisonnier, Guy & Ould-Sidi, Mohamed-Mahmoud & Simonnet, Antoine, 2013. "Design and dimensioning of hydrogen transmission pipeline networks," European Journal of Operational Research, Elsevier, vol. 229(1), pages 239-251.
    2. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    3. Frode Rømo & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad & Bjørgulf Haukelidsæter Eidesen & Birger Pedersen, 2009. "Optimizing the Norwegian Natural Gas Production and Transport," Interfaces, INFORMS, vol. 39(1), pages 46-56, February.
    4. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    4. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    5. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    6. Tianhu Deng & Yong Liang & Shixuan Zhang & Jingze Ren & Shuyi Zheng, 2019. "A Dynamic Programming Approach to Power Consumption Minimization in Gunbarrel Natural Gas Networks with Nonidentical Compressor Units," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 593-611, July.
    7. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    8. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    9. Jesco Humpola & Armin Fügenschuh, 2015. "Convex reformulations for solving a nonlinear network design problem," Computational Optimization and Applications, Springer, vol. 62(3), pages 717-759, December.
    10. Yijiang Li & Santanu S. Dey & Nikolaos V. Sahinidis, 2024. "A reformulation-enumeration MINLP algorithm for gas network design," Journal of Global Optimization, Springer, vol. 90(4), pages 931-963, December.
    11. Ríos-Mercado, Roger Z. & Borraz-Sánchez, Conrado, 2015. "Optimization problems in natural gas transportation systems: A state-of-the-art review," Applied Energy, Elsevier, vol. 147(C), pages 536-555.
    12. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    14. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    15. repec:cty:dpaper:1464 is not listed on IDEAS
    16. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    17. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    18. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    19. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    20. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    21. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2023. "Analytical sensitivity analysis of radial natural gas networks," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:46:y:2016:i:6:p:533-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.